СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ ФТОРИДОВ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ Российский патент 2015 года по МПК C30B11/02 C30B29/12 

Описание патента на изобретение RU2543876C1

Изобретение относится к области технологии оптических кристаллических материалов, используемых в качестве оптической среды повышенной радиационной стойкости для передачи фотонного излучения с различной частотой и мощностью оптических сигналов.

Широким набором свойств, привлекательных для разработчика оптических приборов в качестве лазерного материала, обладают фториды щелочноземельных металлов со структурой флюорита, которые традиционно получают путем выращивания монокристаллов высокого качества с присадкой фторида свинца. Хорошо известны такие монокристаллы на основе фторидов щелочных, щелочноземельных и редкоземельных металлов (Степанов И.В., Феофилов П.П. Искусственный флюорит. Сб. «Рост кристаллов», 1957, М.: Изд. АН СССР, с. 229; Справочник по лазерам. / Под ред. А.М. Прохорова, в 2-х томах. - М.: «Советское Радио», 1978, т.1, 504 с: с. 261, 267, 271, 273-278, 297-299, 307, 310-313).

Недостаток способа выращивания кристаллов фторидов щелочноземельных металлов, использованного в цитированных работах, состоит в том, что радиационно-стойкие кристаллы нельзя получить из шихты, в которой обычно присутствует незначительная (на уровне сотых и тысячных долей молярных процентов) примесь фторидов щелочных металлов, а именно фторида натрия или фторида калия.

Как известно (Архангельская В.А., Рейтеров В.М., Трофимова Л.М. Примесное поглощение кристаллов щелочноземельных фторидов в вакуумной ультрафиолетовой области спектра. Журнал прикладной спектроскопии, 1980, т.32, вып.1, с. 104-105) границы фундаментального поглощения кристаллов фторидов кальция, стронция и бария находятся около 122, 128 и 135 нм. Наличие примесей фторидов щелочных металлов вызывает резкое снижение значения коэффициента пропускания в вакуумной ультрафиолетовой области (ВУФ) области спектра ≤250 нм и таким образом влечет за собой резкое ухудшение оптического качества кристалла. Например, даже при незначительной концентрации фторида натрия 3·10-3 мол.% в кристалле фторида кальция коэффициент поглощения на длине волны 125 нм увеличивается в два раза. При увеличении концентрации фторида натрия на порядок сдвиг ВУФ границы поглощения в длинноволновую область спектра еще более велик. Для длины волны 130 нм дифференциальный коэффициент поглощения становится равным 3,7 см-1, то есть кристалл практически полностью становится непрозрачным и это значение длины волны можно считать границей области пропускания, которая таким образом сдвигается в более длинноволновый диапазон спектра.

Это явление объясняют (Архангельская В.А., Рейтеров В.М., Трофимова Л.М., Щеулин А.С. Оптические свойства кристаллов типа флюорита с МА-центрами окраски. Журнал прикладной спектроскопии, 1982, т.37, вып.4) образованием в кристалле фторида щелочноземельного металла анионных вакансий, ассоциированных с ионом примеси - ионом щелочного металла.

Близким к предлагаемому изобретению по технической сущности является способ получения кристаллов фторидов щелочноземельных металлов из расплавленной шихты, в которой содержится фторид иттрия (Архангельская В.А., Рейтеров В.М., Трофимова Л.М. Примесное поглощение кристаллов щелочноземельных фторидов в вакуумной ультрафиолетовой области спектра. Журнал прикладной спектроскопии, 1980, т.32, вып.1, с. 106).

Недостатком данного способа является то, что введение фторида иттрия даже в концентрациях на уровне 10-3 мол.% в шихту чистого фторида кальция вызывает появление полос поглощения на 134 и 154 нм с коэффициентом поглощения 1,1 и 3,0 см-1, соответственно, в ВУФ области спектра. При концентрации фторида иттрия 3·10-1 мол.% граница фундаментального поглощения вообще сдвигается в длинноволновую часть спектра до 170 нм.

Прототип. Наиболее близким к предлагаемому способу является изобретение «Способ получения кристаллов фторидов щелочноземельных металлов» (А.с. СССР №1037690, С30В 11/02; С30В 29/12 с приоритетом от 01.10.1980, опубл. 27.07.2000). Для повышения радиационной оптической устойчивости кристаллов процесс выращивания кристаллов фторидов щелочноземельных металлов ведут из шихты, в которой содержатся добавки фторида натрия или калия и фторида иттрия в соотношении 0,2-0,5 и ≤1 мол.% соответственно.

Недостатком способа по прототипу является наличие иттрия фторида в исходной шихте, который при заявленных высоких концентрациях резко снижает пропускание в ультрафиолетовой и около границы ВУФ области спектра (121,6 нм) и приводит к длинноволновому сдвигу фундаментальной полосы поглощения света в кристалле фторида щелочноземельного металла до значения 300 нм.

Задача данного изобретения - повышение пропускания щелочноземельных фторидов в ультрафиолетовой области спектра около границы ВУФ области как в обычных условиях эксплуатации, так и в полях ионизирующих излучений высокой плотности, а также повышение радиационной стойкости кристаллов.

По предлагаемому способу получения кристаллов фторидов щелочноземельных элементов из расплавленной шихты, содержащей обычную примесь - фторид щелочного металла (обычно - фторид натрия или калия), в отличие от прототипа, используют шихту с содержанием дополнительной добавки фторида лантана, при этом добавка фторида лантана по отношению к концентрации примеси фторида щелочного металла составляет соотношение 0.2-0,3 в молярном измерении, причем концентрация фторида лантана не должна превышать значение более 1 мол.%. Превышение концентрации фторида лантана более чем 1 мол.% приводит к появлению фазовой неоднородности кристалла фторида щелочноземельного металла, а тем самым, и к резкому снижению оптических характеристик.

Изменение соотношения концентраций примеси и добавки как в сторону уменьшения, так и в сторону увеличения указанного значения, снижает радиационную устойчивость полученных по заявляемому способу кристаллов.

Концентрацию фторида щелочного металла определяют методом аналитического контроля по известной методике. В подготовленную шихту вводят расчетное количество фторида лантана. Шихту помещают в тигель, размещенный в вакуумной печи. После нагрева тигля и расплавления шихты путем опускания через градиентную температурную зону проводят кристаллизацию. По окончании процесса тигель поднимают в исходное положение и отжигают полученную заготовку.

Пример №1. Исходное сырье - синтетический фторид кальция марки РУ, квалификации х.ч. по ТУ 6-09-01-572-79 производства ЗАО «УНИХИМ» (СПб). Концентрация фторида калия 3·10-3 мол.%. Вводят добавку фторида лантана в концентрации 1,5·10-3 мол.%, 1.0 мол.% (весовое соотношение 0,2). Добавляют раскислитель - фторид свинца в количестве 0,5 мол.%. Шихту помещают в тигель, размещенный в вакуумной печи. После нагрева тигля и расплавления шихты путем опускания через градиентную температурную зону проводят кристаллизацию. По окончании процесса кристаллизации тигель поднимают в исходное положение и отжигают заготовку. Коэффициент поглощения на длине волны 125 нм до облучения 1,0 см-1; после облучения дозой 108 РАД - 2,5 см-1. Для кристалла - образец сравнения без добавки фторида лантана - коэффициент поглощения на три порядка больше. Для необлученного кристалла по прототипу - коэффициент поглощения на длине волны 154 нм 3,0 см-1,

Пример №2. Исходное сырье - синтетический фторид кальция марки РУ, квалификации х.ч. по ТУ 6-09-01-572-79 производства ЗАО «УНИХИМ» (СПб). Концентрация фторида натрия 2,4·10-1 мол.%. Добавляют фторид лантана в концентрации 0,72·10-1 мол.% (весовое соотношение 0,3). Добавляют фторид свинца в количестве 0,5 мол.%. Шихту помещают в тигель, размещенный в вакуумной печи. После нагрева тигля и расплавления шихты путем опускания через градиентную температурную зону проводят кристаллизацию. По окончании процесса тигель поднимают в исходное положение и отжигают заготовку. Коэффициент поглощения на длине волны 125 нм до облучения 1,5 см-1; после облучения дозой 108 РАД - 4,5 см-1. Для кристалла - образец сравнения без добавки фторида лантана - коэффициент поглощения на 2 порядка больше. Для необлученного кристалла по прототипу - коэффициент поглощения на длине волны 154 нм 3,0 см-1.

Пример №3. Исходный состав шихты - синтетический фторид бария. Концентрация фторида натрия 3·10-3 мол.%. Вводят добавку фторида лантана в концентрации 2,4·10-3 мол.%. Добавляют раскислитель - фторид свинца в количестве 0,5 мол.%. Шихту помещают в тигель, размещенный в вакуумной печи. После нагрева тигля и расплавления шихты путем опускания через градиентную температурную зону проводят кристаллизацию. По окончании процесса тигель поднимают в исходное положение и отжигают заготовку. Коэффициент поглощения на длине волны 125 нм до облучения 0,8 см-1; после облучения дозой 108 РАД - 2,3 см-1. Для кристалла - образец сравнения без добавки фторида - лантана коэффициент поглощения более чем на три порядка больше. Для необлученного кристалла по прототипу - коэффициент поглощения на длине волны 154 нм составляет 3,0 см-1.

Пример №4. Исходный состав шихты - синтетический фторид стронция с примесью фторида натрия 3·10-3 мол.%. Вводят добавку фторида лантана в концентрации 2,4·10-3 мол.%. Добавляют раскислитель - фторид свинца в количестве 0,5 мол.%. Шихту помещают в тигель, размещенный в вакуумной печи. После нагрева тигля и расплавления шихты путем опускания через градиентную температурную зону проводят кристаллизацию. По окончании процесса тигель поднимают в исходное положение и отжигают заготовку. Коэффициент поглощения на длине волны 125 нм до облучения 1,0 см-1; после облучения дозой 108 РАД - 2,4 см-1. Для кристалла - образец сравнения без добавки фторида лантана - коэффициент поглощения на той же длине волны - на три порядка больше. Для необлученного кристалла по прототипу - коэффициент поглощения на длине волны 154 нм 3,0 см-1, то есть больше в три раза даже на существенно большей длине волны по сравнению с приведенным выше значением для 1,0 см-1 на 125 нм.

Пример №5. Исходное сырье - синтетический фторид стронция производства ЗАО «УНИХИМ» (СПб). Концентрация фторида натрия 2,4·10-1 мол.%. Добавляют фторид лантана в концентрации 0,62·10-1 мол.% (весовое соотношение 0,3). Добавляют фторид свинца в количестве 0,5 мол.%. Шихту помещают в тигель, размещенный в вакуумной печи. После нагрева тигля и расплавления шихты путем опускания через градиентную температурную зону проводят кристаллизацию. По окончании процесса тигель поднимают в исходное положение и отжигают заготовку. Коэффициент поглощения на длине волны 125 нм до облучения 1,6 см-1; после облучения дозой 108 РАД - 3,5 см-1. Для кристалла - образец сравнения без добавки фторида лантана - коэффициент поглощения на 2 порядка больше. Для необлученного кристалла по прототипу - коэффициент поглощения на длине волны 154 нм 4,0 см-1.

Пример №6. Исходное сырье - синтетический фторид бария производства ЗАО «УНИХИМ» (СПб). Концентрация фторида натрия 2,4·10-1 мол.%. Добавляют фторид лантана в концентрации 0,72·10-1 мол.% (весовое соотношение 0,2). Добавляют фторид свинца в количестве 0,5 мол.%. Шихту помещают в тигель, размещенный в вакуумной печи. После нагрева тигля и расплавления шихты путем опускания через градиентную температурную зону проводят кристаллизацию. По окончании процесса тигель поднимают в исходное положение и отжигают заготовку. Коэффициент поглощения на длине волны 125 нм до облучения 1,9 см-1; после облучения дозой 108 РАД - 5,5 см-1. Для кристалла - образец сравнения без добавки фторида лантана - коэффициент поглощения на 2 порядка больше. Для необлученного кристалла по прототипу - коэффициент поглощения на длине волны 154 нм 3,0 см-1.

Как видно из приведенных примеров, концентрация вводимых добавок находится в диапазоне от 0.2-0,3 мол.%. Все изготовленные кристаллы обладают характеристиками, решающими поставленную задачу изобретения.

Похожие патенты RU2543876C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ МОНОКРИСТАЛЛОВ ФТОРИДОВ КАЛЬЦИЯ И БАРИЯ 2009
  • Гарибин Евгений Андреевич
  • Демиденко Алексей Александрович
  • Миронов Игорь Алексеевич
  • Крутов Михаил Анатольевич
RU2400573C1
СЦИНТИЛЛЯЦИОННЫЙ МАТЕРИАЛ ДЛЯ РЕГИСТРАЦИИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ ВЫСОКИХ ЭНЕРГИЙ (ВАРИАНТЫ) 1992
  • Кривандина Е.А.
  • Бучинская И.И.
  • Жмурова З.И.
  • Соболев Б.П.
  • Васильченко В.Г.
  • Козлов В.А.
RU2056638C1
СПОСОБ ОТЖИГА КРИСТАЛЛОВ ФТОРИДОВ МЕТАЛЛОВ ГРУППЫ IIA 2009
  • Гарибин Евгений Андреевич
  • Демиденко Алексей Александрович
  • Миронов Игорь Алексеевич
  • Крутов Михаил Анатольевич
RU2421552C1
МОНОКРИСТАЛЛЫ ВОЛЬФРАМАТА СВИНЦА 1998
  • Йосиюки Усуки
RU2145648C1
ШИХТА ДЛЯ ПОЛУЧЕНИЯ ТЕРМОЛЮМИНОФОРА 2004
  • Шульгин Б.В.
  • Королева Т.С.
  • Черепанов А.Н.
  • Кидибаев М.М.
RU2264634C1
СПОСОБ ПОЛУЧЕНИЯ ФТОРИДНОЙ НАНОКЕРАМИКИ 2010
  • Гарибин Евгений Андреевич
  • Гусев Павел Евгеньевич
  • Демиденко Алексей Александрович
  • Смирнов Андрей Николаевич
  • Миронов Игорь Алексеевич
  • Осико Вячеслав Васильевич
  • Федоров Павел Павлович
  • Кузнецов Сергей Викторович
RU2436877C1
ЛАЗЕРНАЯ ФТОРИДНАЯ КЕРАМИКА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2006
  • Миронов Игорь Алексеевич
  • Гарибин Евгений Андреевич
  • Демиденко Алексей Александрович
  • Смирнов Андрей Николаевич
  • Осико Вячеслав Васильевич
  • Федоров Павел Павлович
  • Лугинина Анна Александровна
  • Дукельский Константин Владимирович
RU2321120C1
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛИЧЕСКОГО СЦИНТИЛЛЯТОРА НА ОСНОВЕ САМОАКТИВИРОВАННОГО РЕДКОЗЕМЕЛЬНОГО ГАЛОГЕНИДА 2021
  • Юсим Валентин Александрович
  • Саркисов Степан Эрвандович
RU2762083C1
ЛАЗЕРНАЯ ФТОРИДНАЯ НАНОКЕРАМИКА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2011
  • Гарибин Евгений Андреевич
  • Гусев Павел Евгеньевич
  • Демиденко Алексей Александрович
  • Крутов Михаил Анатольевич
  • Миронов Игорь Алексеевич
  • Осико Вячеслав Васильевич
  • Смирнов Андрей Николаевич
  • Федоров Павел Павлович
  • Чернова Елена Владимировна
  • Йоахим Хайн
  • Дитер Нитцольд
  • Ханс-Йоахим Поль
  • Ульрих Шрамм
  • Матиас Зибольд
RU2484187C1
ВЕЩЕСТВО ДЛЯ АКТИВНОГО СВЕТОУПРАВЛЯЕМОГО ОПТИЧЕСКОГО ЗАТВОРА УЛЬТРАФИОЛЕТОВОГО ДИАПАЗОНА СПЕКТРА 2017
  • Аглямов Радик Дависович
  • Наумов Александр Кондратьевич
  • Ловчев Александр Владимирович
  • Кораблева Стелла Леонидовна
  • Морозов Олег Александрович
RU2654390C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ ФТОРИДОВ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ

Изобретение относится к области технологии оптических кристаллических материалов, используемых в качестве оптической среды повышенной радиационной стойкости, предназначенной для передачи фотонного излучения с различной частотой и мощностью оптических сигналов. Кристаллы фторидов щелочноземельных металлов получают из расплавленной шихты, содержащей примесь фторида натрия или калия и дополнительно добавку фторида лантана при весовом соотношении между добавкой фторида лантана и примесью фторида щелочного металла 0,2-0,3 и концентрации фторида лантана не более 1 мол.%. Технический результат - повышение пропускания щелочноземельных фторидов около границы вакуумной ультрафиолетовой (ВУФ) области спектра как в обычных условиях эксплуатации, так и в полях ионизирующих излучений высокой плотности, а также радиационной стойкости кристаллов. 6 пр.

Формула изобретения RU 2 543 876 C1

Способ получения кристаллов фторидов щелочноземельных металлов из расплавленной шихты, содержащей примесь фторида натрия или калия, отличающийся тем, что используют шихту, содержащую дополнительно добавку фторида лантана при весовом соотношении между добавкой фторида лантана и примесью фторида щелочного металла 0,2-0,3 и концентрации фторида лантана не более 1 мол. %.

Документы, цитированные в отчете о поиске Патент 2015 года RU2543876C1

SU 1037690 A1, 27.07.2000
Способ изготовления валиков с твердой поверхностью и мягкими торцами 1965
  • Алексеев Д.П.
  • Орлова А.П.
  • Алкснис Э.М.
SU213514A1
JIANG CHONGYI et al, Growth and properties of scintillating crystal BaF2, “;J
Cryst
Growth”;, 1986, 79, No.1-3, Pt.2, 720-722

RU 2 543 876 C1

Авторы

Евстропьев Сергей Константинович

Егоров Валерий Юрьевич

Рейтеров Владимир Михайлович

Смирнов Андрей Николаевич

Даты

2015-03-10Публикация

2013-12-19Подача