СПОСОБ ФОРМИРОВАНИЯ КОРРЕЛИРОВАННЫХ СЛУЧАЙНЫХ СИГНАЛОВ Российский патент 2015 года по МПК G06F7/58 G06F1/02 

Описание патента на изобретение RU2546579C2

Изобретение относится к способам создания широкополосных случайных процессов с заданными собственными и взаимными спектральными плотностями мощности и может быть использовано в приборостроении, машиностроении, вычислительной технике для создания, в частности, многоканальных автоматических систем, в испытаниях на вибростойкость к воздействиям случайной вибрации и т.д.

Известен («Автоматическое управление вибрационными испытаниями», Библиотека по автоматике, выпуск 579, Москва, Энергия, 1978 г.) способ формирования по заданной спектральной плотности случайного сигнала в форме разложения Райса-Пирсона со случайной на каждой гармонике фазой, равномерно распределенной в диапазоне [-π, π], и выполнения процедуры обратного быстрого преобразования Фурье (ОБПФ).

Сформированные таким способом случайные сигналы являются независимыми, что в некоторых случаях является недостатком.

Предлагаемым изобретением решается задача генерирования двух случайных сигналов x(t) и y(t) с заданной функцией когерентности γху(f).

Для достижения названного технического результата предлагается способ формирования коррелированных случайных сигналов, включающий формирование во временной области по заданным спектральным плотностям Sx(f) и Sy(f) стационарных случайных сигналов x(t), y(t) в форме разложения Райса-Пирсона со случайными на каждой гармонике f1 фазами Θi и Ωi, определяемыми методом случайной выборки случайной величины, одна из которых - Θi для сигнала x(t) равномерно распределена в диапазоне [-π, π], а другая - Ωi для второго сигнала y(t) определяется как сумма Ωii+Δφi случайной величины Θi и случайной величины Δφi, равномерно распределенной в диапазоне [-φi, φi], границы которого определяются через взаимную спектральную плотность Sxy(f) случайных сигналов x(t) и y(t) из решения уравнения:

sin ϕ i ϕ i = S x y ( f i ) S x ( f i ) S y ( f i ) ,

и выполнения процедуры ОБПФ.

Отличительным признаком предлагаемого способа является то, что случайные фазы Θi одного сигнала x(t) определяются на каждой гармонике fi методом случайной выборки случайной величины, равномерно распределенной в диапазоне [-π, π], а случайные фазы Ωi второго сигнала y(t) определяются на каждой гармонике fi как сумма Ωii+Δφi случайной величины Ωi, равномерно распределенной в диапазоне [-π, π], и случайной величины Δφi, равномерно распределенной в диапазоне [-φi, φi], границы которого определяются через взаимную спектральную плотность Ssy(f) случайных сигналов x(t) и y(t) из решения уравнения:

sin ϕ i ϕ i = S x y ( f i ) S x ( f i ) S y ( f i )

Благодаря наличию указанного отличительного признака в совокупности с известными приобретается возможность формирования двух случайных сигналов x(t) и y(t) с заданной функцией когерентности γху(f).

В результате поиска по источникам патентной и научно-технической информации, решений, содержащих аналогичные признаки, не обнаружено.

Таким образом, можно сделать заключение о том, что предложенный способ неизвестен на уровне техники и, следовательно, соответствует критерию «патентоспособности».

Предложенный способ может найти применение везде, где возникает необходимость в случайных взаимно коррелированных сигналах с заданным уровнем когерентности, что позволяет сделать вывод о соответствии критерию «Промышленная применимость».

Способ реализуется следующим образом: в заданном спектральной плотностью Sx(f) диапазоне частот с шагом Δf выбирают дискретный ряд частот fi=i Δf. В каждом частотном диапазоне fi<f<fi+1 по заданной спектральной плотности Sx(f) определяют амплитуды гармоник A i = A ( f i ) = 2 S x ( f i ) Δ f , из случайной, равномерно распределенной в диапазоне [-π, π] величины по случайному закону выбирают фазы Θi, вычисляют реальные и мнимые составляющие вектора гармоник единичной длины Re(fi)=cosΘi, Im(fi)=SinΘi, производят умножение Re(fi) и Im(fi) на величину A i = 2 S x ( f i ) Δ f , выполняют процедуры ОБПФ для перехода от частотного блока комплексных амплитуд {Re(fi), Im(fi)} во временную область и получают однокомпонентный сигнал x(iΔt) в форме разложения Райса-Пирсона, длиной Т=1/Δf, содержащего N точек с периодом дискретизации Δt [сек] и случайными амплитудами Ai (i=0, 1, …, N-1), распределенными по нормальному закону Гаусса.

По заданной спектральной плотности Sy(f) в каждом частотном диапазоне fi<f<fi+1 определяют амплитуды гармоник B i = 2 S x ( f i ) Δ f , из случайной, равномерно распределенной в диапазоне [-π, π] величины по случайному закону выбирают фазы Θi.

На каждой гармонике fi по заданным в частотной области спектрам амплитуд Sx(f), Sy(f) и взаимной спектральной плотности мощности Sxy(f) случайных сигналов x(f) и y(t) вычисляют функции когерентности:

γ x y ( f i ) = S x y ( f i ) 2 S x ( f i ) Δ f = f i f i + Δ f S x y ( f ) d f f i f i + Δ f S x ( f ) d f f i f i + Δ f S y ( f ) d f

и диапазон {±φi} случайных фаз Δφi:

sin ϕ i ϕ i = γ x y ( f i ) .

Из случайной, равномерно распределенной в диапазоне [-φi, φi] величины по случайному закону выбирают фазы Δφi. Вычисляют фазы Ωii+Δφi гармоник сигнала y(f). Формируют блок комплексных амплитуд {Re(fi), Im(fi)}:

Re ( f i ) = cos ( Ω i ) 2 S y ( f i ) Δ f , Im ( f i ) = sin ( Ω i ) 2 S y ( f i ) Δ f ,

выполняют процедуры ОБПФ и получают во временной области однокомпонентный сигнал y(iΔt) в форме разложения Райса-Пирсона, длиной T=1/Δf, содержащего N точек с периодом дискретизации Δt [сек] и случайными амплитудами Bi (i=0, 1, …, N-1), распределенными по нормальному закону Гаусса, коррелированный с сигналом x(iΔt с заданной функцией когерентности γxy(fi).

В качестве иллюстрации на фигуре 1 приведены примеры взаимосвязанных сигналов (2-20 Гц, белый шум, lg скз) с когерентностью 0,9; 0,7; 0,5 и 0,0 соответственно, полученные предложенным способом.

Похожие патенты RU2546579C2

название год авторы номер документа
ГЕНЕРАТОР КОРРЕЛИРОВАННЫХ СЛУЧАЙНЫХ СИГНАЛОВ 2013
  • Бетковский Юрий Яковлевич
  • Яковлев Виктор Николаевич
RU2546580C2
СПОСОБ НАПРАВЛЕННОГО ИНЕРЦИОННОГО ВИБРОВОЗБУЖДЕНИЯ И ДЕБАЛАНСНЫЙ ВИБРОВОЗБУДИТЕЛЬ НАПРАВЛЕННОГО ДЕЙСТВИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Герасимов Михаил Дмитриевич
  • Исаев Иван Кузьмич
  • Степанищев Виктор Анатольевич
  • Герасимов Дмитрий Михайлович
RU2528715C1
СПОСОБ ИМИТАЦИИ РАДИОЛОКАЦИОННОЙ ЦЕЛИ С НЕЛИНЕЙНЫМИ ЭЛЕКТРИЧЕСКИМИ СВОЙСТВАМИ 2011
  • Галанин Артем Юрьевич
  • Юрин Федор Олегович
  • Фадеев Руслан Вячеславович
  • Усов Николай Александрович
RU2507534C2
ЭТАЛОННОЕ РАБОЧЕЕ МЕСТО АБСОЛЮТНОЙ ПРЕЦИЗИОННОЙ КАЛИБРОВКИ ЗАПАЗДЫВАНИЯ ОГИБАЮЩИХ ЛИТЕРНЫХ ЧАСТОТ В ПРИЕМНИКЕ СИГНАЛОВ ГЛОНАСС 2011
  • Дубинко Юрий Сергеевич
  • Полтаржицкий Мустаф Ибрагимович
  • Селиверстов Алексей Сергеевич
RU2525853C2
СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ МОРЯ 2011
  • Жуков Юрий Николаевич
  • Чернявец Владимир Васильевич
RU2452984C1
СПОСОБ ИМИТАЦИИ РАДИОЛОКАЦИОННЫХ СИГНАЛОВ РАДИОЛОКАЦИОННЫХ СИСТЕМ НАВИГАЦИИ ЛЕТАТЕЛЬНЫХ АППАРАТОВ 2015
  • Кольцов Юрий Васильевич
  • Белинский Артем Васильевич
RU2586966C1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕРОЯТНОСТИ ОШИБКИ НА БИТ ПО ФЛУКТУАЦИЯМ ФАЗЫ ИНФОРМАЦИОННЫХ СИГНАЛОВ 2012
  • Егоров Владимир Викторович
  • Катанович Андрей Андреевич
  • Лобов Сергей Александрович
  • Маслаков Михаил Леонидович
  • Мингалев Андрей Николаевич
  • Смаль Михаил Сергеевич
  • Тимофеев Александр Евгеньевич
RU2526283C2
АКУСТИЧЕСКИЙ СПОСОБ ОБНАРУЖЕНИЯ НЕИСПРАВНОСТИ РЕЛЬСОВОГО ПУТИ 2012
  • Черепанов Анатолий Нестерович
  • Сергеев Владимир Ильич
  • Масягутов Рустем Касимович
  • Огарко Андрей Владимирович
RU2511644C1
СПОСОБ СЪЕМКИ РЕЛЬЕФА ДНА АКВАТОРИИ И ЭХОЛОТ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Зеньков Андрей Федорович
  • Денесюк Евгений Андреевич
  • Чернявец Владимир Васильевич
  • Кытманов Дмитрий Николаевич
  • Маркарян Алина Валерьевна
RU2573626C1
СПОСОБ ОБНАРУЖЕНИЯ, ОПРЕДЕЛЕНИЯ КООРДИНАТ И СОПРОВОЖДЕНИЯ ВОЗДУШНЫХ ОБЪЕКТОВ 2014
  • Белов Юрий Георгиевич
  • Кейстович Александр Владимирович
  • Кейстович Андрей Александрович
RU2564385C1

Реферат патента 2015 года СПОСОБ ФОРМИРОВАНИЯ КОРРЕЛИРОВАННЫХ СЛУЧАЙНЫХ СИГНАЛОВ

Изобретение относится к способам создания широкополосных случайных процессов с заданными собственными и взаимными спектральными плотностями мощности и может быть использовано в приборостроении, машиностроении, вычислительной технике для создания, в частности, многоканальных автоматических систем, в испытаниях на вибростойкость к воздействиям случайной вибрации. Техническим результатом является генерирование двух случайных сигналов с заданной функцией когерентности. Способ включает формирование во временной области по заданным спектральным плотностям Sx(f) и Sy(f) стационарных случайных сигналов x(f), y(t) в форме разложения Райса-Пирсона со случайными на каждой гармонике fi фазами Θi и Ωi, определяемыми методом случайной выборки случайной величины, одна из которых - Θi для сигнала x(t) равномерно распределена в диапазоне [-π, π], а другая - Ωi для второго сигнала y(t) определяется как сумма Ωii+Δφi случайной величины Θi и случайной величины Δφi, равномерно распределенной в диапазоне [-φi, φi], границы которого определяются через взаимную спектральную плотность Sxy(f) случайных сигналов x(t) и y(t). 1 ил.

Формула изобретения RU 2 546 579 C2

Способ формирования коррелированных случайных сигналов, включающий формирование во временной области по заданным спектральным плотностям Sx(f) и Sy(f) стационарных случайных сигналов x(t), y(t) в форме разложения Райса-Пирсона со случайными на каждой гармонике fi фазами Θi и Ωi, отличающийся тем, что случайные фазы Θi одного сигнала x(t) определяются на каждой гармонике fi методом случайной выборки случайной величины, равномерно распределенной в диапазоне [-π, π], а случайные фазы Ωi второго сигнала y(t) определяются на каждой гармонике fi как сумма Ωii+Δφi, случайной величины Θi, равномерно распределенной в диапазоне [-π, π], и случайной величины ΔφI, равномерно распределенной в диапазоне [-φ, φi], границы которого определяются через взаимную спектральную плотность Sxy(f) случайных сигналов x(t) и y(t) из решения уравнения:
.

Документы, цитированные в отчете о поиске Патент 2015 года RU2546579C2

ГЕТМАНОВ А.Г
и др
АВТОМАТИЧЕСКОЕ УПРАВЛЕНИЕ ВИБРАЦИОННЫМИ ИСПЫТАНИЯМИ, Москва, Энергия, 1978, с
Способ размножения копий рисунков, текста и т.п. 1921
  • Левенц М.А.
SU89A1
Генератор случайного процесса 1982
  • Якубенко Александр Георгиевич
  • Жук Владимир Степанович
  • Костюк Сергей Федорович
  • Кузьмич Анатолий Иванович
SU1068936A1
Формирователь случайных сигналов 1987
  • Атаманкин Сергей Александрович
  • Гусинская Галина Васильевна
  • Езерский Виктор Витольдович
SU1483587A1
ГЕНЕРАТОР СЛУЧАЙНЫХ СИГНАЛОВ 2000
  • Николаев В.И.
  • Волобуев Г.Б.
  • Ледовских В.И.
RU2201649C2
US 6337643 B1, 08.01.2002

RU 2 546 579 C2

Авторы

Бетковский Юрий Яковлевич

Яковлев Виктор Николаевич

Даты

2015-04-10Публикация

2013-04-11Подача