АККУМУЛЯТОР ТЕПЛОТЫ С ФАЗОПЕРЕХОДНЫМ МАТЕРИАЛОМ Российский патент 2015 года по МПК F24H7/00 F24J2/04 

Описание патента на изобретение RU2547680C1

Изобретение относится к теплоэнергетике и может быть использовано для аккумулирования тепловой энергии, преимущественно солнечной и ветровой.

Известен высокотемпературный аккумуляторный нагреватель [1], содержащий корпус, снабженный со стороны его внутренней поверхности слоем теплоизоляции, в котором соосно корпусу размещен теплоаккумулирующий элемент, снабженный кожухом. Теплоаккумулирующий элемент выполнен в виде блока из параллельных рядов полых цилиндров, заполненных веществом, изменяющим свое агрегатное состояние в интервале рабочих температур, причем цилиндры установлены в овальных отверстиях, выполненных в кожухе, и расположены в каждом ряду параллельно и перпендикулярно относительно цилиндров смежных рядов. Разогрев высокотемпературного аккумуляторного нагревателя может производиться как горячим газом, так и электрическим нагревателем. В первом случае через кожух пропускается горячий газ до тех пор, пока не расплавится вещество, которым заполнены теплоаккумулирующие элементы, после чего разогрев прекращается и производится продувка нагревателя нагреваемым газом. При разогреве аккумуляторного нагревателя с помощью электричества в кожух помещают электронагреватели, тепло от которых расплавляет вещество в теплоаккумулирующих элементах.

Недостатком данного нагревателя является неэффективное использование фазопереходных теплоаккумулирующих материалов для аккумулирования тепла из-за низкой теплопроводности твердых фазопереходных материалов в большом объеме бака и низкого теплообмена с теплоносителем по всему объему и необходимость периодического снятия и установки электронагревателя при разогреве нагревателя с помощью электричества.

Известна установка для осуществления способа работы аккумулятора теплоты на фазовом переходе [2]. Установка состоит из вертикального кожухотрубного теплообменника, имеющего в нижней части входную камеру и трубную доску, в которой укреплены, например, четыре группы трубок, причем последние выходят соответственно в четыре выпускных камеры, каждая из которых имеет на выходе в сеть запорное устройство, соответственно. Между трубной доской и камерой расположено межтрубное пространство. Для четырех групп трубки расположены таким образом, что вокруг каждой из трубок одной группы расположены трубки трех других групп по вершинам правильного шестиугольника.

Недостаток такого устройства и способа теплового аккумулирования на фазовом переходе заключается в том, что теплопередача осуществляется в определенной последовательности, которую трудно осуществлять автоматически, а если вручную, то это не удобно.

Наиболее близким к заявляемому является электронагреватель [3], который содержит корпус, разделенный поперечной перфорированной перегородкой на верхнюю и нижнюю камеры, первая из которых снабжена патрубком подвода нагреваемого теплоносителя, а последняя заполнена теплоаккумулирующим веществом с фазовым переходом в зоне рабочих температур и снабжена электронагревательным элементом. Электронагреватель снабжен дополнительной поперечной перегородкой, размещенной в верхней камере с образованием между дополнительной и перфорированной перегородками полости, объем которой равен разности объемов теплоаккумулирующего вещества в твердом и жидком состоянии при температуре плавления вещества. Электронагревательный элемент одним своим концом (нижним) электрически подключен к поперечной перфорированной перегородке, которая выполнена металлической, а боковые стенки корпуса и теплоаккумулирующее вещество выполнены из электроизоляционного материала. Корпус снизу заглушен герметичной пробкой с резьбовым соединением, и сверху - крышкой. К перегородке подключена контактная клемма. В нижней части корпуса находится вторая контактная клемма. Электронагревательный элемент снабжен центральным металлическим основанием, электрически и механически соединенным с перегородкой. К основанию подключен верхний конец электронагревательного элемента. Электронагреватель снабжен воздушником. Для отвода воды служит патрубок. В отопительную систему электронагреватели могут быть включены как в номинальном своем положении, так и повернутыми на 180° относительно своей горизонтальной оси. Соединение электронагревателей осуществлено трубами с помощью соединительных муфт. Электрическое соединение электронагревателей осуществлено резьбовыми муфтами.

Недостатком данного электронагревателя является сложность конструкции, наличие промежуточной камеры, неэффективный теплообмен между фазопереходным теплоаккумулирующим материалом (ФТАМ) и потребителем (помещением) и невозможность его использования для аккумулирования солнечной тепловой энергии напрямую.

Задача изобретения - обеспечение стабильности теплоснабжения зданий от возобновляемых источников энергии за счет использования энергоемких фазовых переходов материалов и повышения теплообмена.

Технический результат, достигаемый в заявляемом изобретении, заключается в повышении эффективности аккумулирования тепла и теплообмена с теплоносителем системы за счет увеличения и равномерного расположения площади поверхности теплообмена по всему объему бака-аккумулятора и возможности использования ее для аккумулирования солнечной тепловой энергии и электроэнергии от ветроэнергетических устройств.

Для достижения этого технического результата корпус аккумулятора теплоты с фазопереходным материалом дополнительно содержит промежуточную крышку и приемник солнечного излучения, поверхность теплообмена состоит из вертикальных трубок, расположенных внутри во всем объеме бака-аккумулятора и заполненных материалом с фазовым переходом, при этом в вертикальных трубках установлены электронагревательные элементы, причем теплоноситель проходит снизу вверх по межтрубному пространству, а сверху над промежуточной и герметичной крышкой расположена свободная полость, выполняющая роль камеры для расширения фазопереходного материала, а дно бака-аккумулятора выполнено приемником солнечного излучения.

Предлагаемый аккумулятор теплоты с фазопереходным материалом иллюстрирован на фигурах 1-4, где фиг.1 - основной вид аккумулятора теплоты с фазопереходным материалом (продольный разрез), фиг.2 - поперечный разрез А-А, фиг.3 - вид сверху промежуточной крышки бака-аккумулятора и фиг.4 - крепление электронагревателя; где 1 - корпус; 2 - рабочее вещество (фазопереходный теплоаккумулирующий материал - ФТАМ); 3 - вертикальные трубки; 4 - дно бака-аккумулятора - приемник солнечного излучения; 5 - промежуточная крышка; 6 - отверстия для пропуска вертикальных трубок; 7 - отверстия для крепежных болтов; 8 - крепежные болты; 9 - полость-камера для расширения ФТАМ; 10 - герметичная крышка бака-аккумулятора; 11, 12 - патрубки подвода и отвода теплоносителя, соответственно; 13 - электронагревательные элементы; 14 - резьбовая обойма; 15 - перемычки крепления резьбовой обоймы с электронагревательным элементом к вертикальной трубке.

Аккумулятор теплоты с фазопереходным материалом содержит корпус 1, рабочее вещество (ФТАМ) 2, заполняющее вертикальные трубки 3, которые крепятся ко дну 4, которое может служить также и приемником концентрированного солнечного излучения (СИ), и промежуточной крышке 5 с отверстиями 6 для пропуска трубок и 7 для крепежных болтов 8, снизу трубки закрыты, а сверху открыты для объемного расширения ФТАМ 2 в свободную полость-камеру 9 под герметичной крышкой 10, которая через уплотнители крепится к основному корпусу бака-аккумулятора гайками и болтами 8. К корпусу бака-аккумулятора 1 привариваются патрубки подвода 11 и отвода 12 теплоносителя. В вертикальные трубки 3 с ФТАМ вставляются электронагревательные элементы 13, которые соединяются электропроводами к источнику электрической энергии, например ветроэнергетической установке. Электронагревательные элементы 13 вкручиваются в резьбовую обойму 14, которая крепится к вертикальным трубкам 3 с ФТАМ перемычками 15.

Аккумулятор теплоты с фазопереходным материалом работает следующим образом.

Снимают крышку 10 аккумулятора теплоты, и заполняют трубки 3 фазопереходным теплоаккумулирующим материалом 2, и крышку закрывают. Зарядка аккумулятора с фазопереходным материалом теплоты происходит за счет солнечной энергии, направляемой зеркалами на дно 4 бака-аккумулятора - приемника СИ, при этом из-за большой теплопроводности стали трубок 3 и кожуха электронагревательных элементов 13, происходит интенсивное плавление рабочего вещества 2 в них, объемное расширение рабочего вещества происходит в свободную полость-камеру 9 под герметичной крышкой 10. Зарядка может происходить и за счет электрической энергии при подключении источника к электронагревательным элементам 13 в вертикальных трубках 3 с ФТАМ 2, тогда же и греется теплоноситель в межтрубном пространстве бака-аккумулятора, которая подается снизу через патрубок 11 подвода теплоносителя и отводится через патрубок 12 отвода. Если аккумулятор теплоты с фазопереходным материалом используется в традиционных системах теплоснабжения на органическом топливе, рабочее вещество плавится, (аккумулятор заряжается) за счет теплоносителя (горячей воды) в межтрубном пространстве. Во время повышения тепловой нагрузки или отсутствия солнечной энергии аккумулятор разряжается, и теплоноситель в межтрубном пространстве бака-аккумулятора нагревается за счет фазового перехода (кристаллизации) рабочего вещества 2 в трубках 3 равномерно во всем объеме бака-аккумулятора. Кожухи электронагревательных элементов, установленных в вертикальные трубки с ФТАМ, и при отсутствии электрической энергии выполняют роль теплообменников.

Таким образом, предлагаемый аккумулятор теплоты с фазопереходным материалом прост в обслуживании, отличается от известных высокой эффективностью аккумулирования тепла и теплообмена с теплоносителем системы за счет расположения электронагревательных элементов, увеличения и равномерного расположения площади поверхности теплообмена по всему объему бака-аккумулятора.

БИБЛИОГРАФИЧЕСКИЕ ДАННЫЕ

1. Г.И. Бабаянц, П.П. Кузнецов, А.И. Дементьев, В.М. Ярославцев, Г.С. Козак. «Высокотемпературный аккумуляторный нагреватель», авторское свидетельство №857656, F24И 7/00, F28D 17/00, бюл. №31, 23.08.81.

2. Б.З. Токарь, А.А. Плотников, Э.В. Котенко. «Способ работы аккумулятора теплоты на фазовом переходе», авторское свидетельство №RU 2049968 C1, F24H 7/00, 24.02.1992.

3. И.П. Колесниченко, В.В. Фокин. «Электронагреватель», авторское свидетельство № SU 1688071 А1, F24H 7/00, 1/20, бюл. №40, 30.10.91.

Похожие патенты RU2547680C1

название год авторы номер документа
ТЕПЛООБМЕННИК 2010
  • Алексеев Владимир Антонович
RU2425297C1
КОМПЛЕКС АВТОНОМНОГО ЭЛЕКТРОТЕПЛОСНАБЖЕНИЯ ЗДАНИЯ 2014
  • Шпади Андрей Леонидович
  • Диков Александр Сергеевич
RU2569403C1
УСТРОЙСТВО ДЛЯ ЭЛЕКТРИЧЕСКОГО ОБОГРЕВА ЖИЛЫХ ПОМЕЩЕНИЙ 1992
  • Данилин В.Н.
  • Чесноков А.В.
  • Трацевицкий А.Г.
  • Павлов В.Н.
RU2062958C1
Устройство для теплохладоснабжения 1985
  • Пупков Иван Иванович
  • Михальчук Татьяна Павловна
  • Наумов Сергей Евгеньевич
  • Пупков Михаил Иванович
SU1355844A1
ГЕЛИОСИСТЕМА 2006
  • Бабаев Баба Джабраилович
RU2312276C1
ЭЛЕКТРОТЕПЛОАККУМУЛИРУЮЩИЙ НАГРЕВАТЕЛЬ 2012
  • Щегольков Александр Викторович
  • Ткачев Алексей Григорьевич
  • Ткачев Максим Алексеевич
RU2518920C2
ЭЛЕКТРИЧЕСКИЙ НАГРЕВАТЕЛЬ 1992
  • Артемьев Н.М.
  • Булычев В.В.
  • Загрязкин В.Н.
  • Кузнецов П.П.
  • Маковецкий А.В.
  • Степанов В.С.
  • Труханов И.В.
  • Федик И.И.
RU2044224C1
ТЕПЛОАККУМУЛИРУЮЩИЙ ЭЛЕМЕНТ И ТЕПЛОВОЙ АККУМУЛЯТОР НА ЕГО ОСНОВЕ 1993
  • Булычев Владимир Викторович
  • Емельянов Евгений Стефанович
  • Загрязкин Валерий Николаевич
  • Маковецкий Александр Викторович
  • Степанов Виктор Сергеевич
RU2088857C1
ГЕЛИОСИСТЕМА 2013
  • Шепеть Игорь Петрович
  • Бражнев Сергей Михайлович
  • Бондаренко Дмитрий Викторович
  • Хабаров Алексей Николаевич
  • Литвин Дмитрий Борисович
  • Литвина Екатерина Дмитриевна
  • Захарин Александр Викторович
  • Слесаренок Сергей Владимирович
RU2546902C1
ВСЕСЕЗОННЫЙ ЭЛЕКТРОГЕЛИОВОДОНАГРЕВАТЕЛЬ 2011
  • Газалов Владимир Сергеевич
  • Абеленцев Евгений Юрьевич
RU2471129C1

Иллюстрации к изобретению RU 2 547 680 C1

Реферат патента 2015 года АККУМУЛЯТОР ТЕПЛОТЫ С ФАЗОПЕРЕХОДНЫМ МАТЕРИАЛОМ

Изобретение относится к теплоэнергетике и может быть использовано для аккумулирования тепловой энергии. Сущность изобретения в том, что аккумулятор теплоты с фазопереходным материалом, содержащий корпус, заполненный теплоаккумулирующим материалом с фазовым переходом в зоне рабочих температур, поверхность теплообмена и электронагревательный элемент, содержит промежуточную крышку и приемник солнечного излучения, поверхность теплообмена состоит из вертикальных трубок, расположенных внутри во всем объеме бака-аккумулятора и заполненных материалом с фазовым переходом, и кожухов электронагревательных элементов, установленных в вертикальных трубках, причем теплоноситель проходит снизу вверх по межтрубному пространству, а сверху над промежуточной и герметичной крышкой расположена свободная полость, выполняющая роль камеры для расширения фазопереходного материала из вертикальных трубок, а дно бака-аккумулятора выполнено приемником солнечного излучения. При таком выполнении повышается эффективность аккумулирования тепла и теплообмена с теплоносителем системы за счет увеличения и равномерного расположения площади поверхности теплообмена по всему объему бака-аккумулятора. 4 ил.

Формула изобретения RU 2 547 680 C1

Аккумулятор теплоты с фазопереходным материалом, содержащий корпус, заполненный теплоаккумулирующим материалом с фазовым переходом в зоне рабочих температур, поверхность теплообмена, электронагревательный элемент, отличающийся тем, что корпус дополнительно содержит промежуточную крышку и приемник солнечного излучения, поверхность теплообмена состоит из вертикальных трубок, расположенных внутри во всем объеме бака-аккумулятора и заполненных материалом с фазовым переходом, и кожухов электронагревательных элементов, установленных в вертикальных трубках, причем теплоноситель проходит снизу вверх по межтрубному пространству, а сверху над промежуточной и герметичной крышкой расположена свободная полость, выполняющая роль камеры для расширения фазопереходного материала, а дно бака-аккумулятора выполнено приемником солнечного излучения.

Документы, цитированные в отчете о поиске Патент 2015 года RU2547680C1

Электронагреватель 1989
  • Колесниченко Иван Павлович
  • Фокин Валентин Васильевич
SU1688071A1
Фотоэлектрический туманограф 1944
  • Шлейфман Х.М.
SU65191A1
СПОСОБ ТЕРМОРЕГУЛИРОВАНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ 1992
  • Николаев Юрий Вячеславович
  • Кучеров Рафаил Яковлевич
  • Гординский Владимир Львович
  • Голубев Михаил Павлович
  • Суганеев Виктор Сергеевич
  • Сапелкин Валерий Сергеевич
RU2031491C1
СПОСОБ РАБОТЫ АККУМУЛЯТОРА ТЕПЛОТЫ НА ФАЗОВОМ ПЕРЕХОДЕ 1992
  • Токарь Б.З.
  • Плотников А.А.
  • Котенко Э.В.
RU2049968C1
Линейно-круговой интерполятор 1983
  • Простаков Олег Георгиевич
  • Раисов Юрий Абрамович
  • Середкин Александр Георгиевич
  • Сухер Александр Николаевич
SU1265700A2

RU 2 547 680 C1

Авторы

Бабаев Баба Джабраилович

Даты

2015-04-10Публикация

2013-11-26Подача