СПОСОБ ИЗГОТОВЛЕНИЯ ЖИДКОГО СТЕКЛА Российский патент 2015 года по МПК C01B33/32 

Описание патента на изобретение RU2548097C1

Изобретение относится к технологии изготовления жидкого стекла с различным силикатным модулем.

Жидкое стекло является связующим веществом и широко используется в качестве универсального клея для соединения стекла, бумаги, металла и дерева. Именно на его основе изготавливается канцелярский силикатный клей. Жидкое натриевое стекло нашло применение в производстве чистящих и моющих веществ, в мыловаренной, текстильной промышленности - в качестве связующих добавок. В литейном производстве оно используется как флотационный реагент, в черной металлургии в виде связующего материала для изготовления форм, в целлюлозно-бумажной промышленности для пропитки бумажной массы, склеивания, для производства жароупорных, кислотоупорных материалов, катализаторов, цеолитов, силикагеля, белой сажи, производства электросварочных материалов, силикатных лакокрасочных материалов, приготовления инъекционных составов для укрепления грунтов. Им можно пропитывать ткани, бумаги, картон и деревянные изделия для придания им большей плотности и огнестойкости.

Химический состав натриевого растворимого стекла может быть выражен формулой: Na2O·nSiO2+mH2O,

где Na2O - гидроксид натрия, SiO2 - диоксид кремния.

Из нее видно, что оно (растворимое стекло) не имеет постоянного состава, и соотношение между отдельными составными частями может меняться. Отношение: SiO2:Na2O=M, показывающее, сколько кремнекислоты SiO2 приходится на единицу оксида натрия Na2O, называется силикатным модулем стекла (М). Чаще всего производится и встречается стекло с модулем 2.6-2.8. Количество воды может быть самым неопределенным. В зависимости от этого в коллоидной системе растворимого стекла меняется его консистенция - "плотность" или удельный вес. Заводы обычно выпускают растворимое стекло плотностью (1.38-1.50) г/см3, и затем на месте работ оно разбавляется водой до нужной концентрации.

Обычно производство жидкого стекла (водного раствора силиката натрия) осуществляют путем обжига при высокой температуре (порядка 1600°C) смеси, состоящей из кварцевого песка, представляющего собой кристаллический диоксид кремния - SiO2, и соды - Na2CO3. Полученное стекло (силикат-глыбу) после дробления растворяют в воде, либо силикат-глыба помещается в автоклав и воздействием перегретого пара под давлением формируется состав жидкого стекла (1. ИнфоМайн. Обзор рынка силикат-глыбы и жидкого стекла в СНГ. Издание 3-е дополненное и переработанное. Демонстрационная версия. Москва, ноябрь, 2010 г. http://marketing.r-cons.ru/sites/default/files/0320.pdf 2. Силикат-глыба натриевая (силикат натрия растворимый) ГОСТ Р 50418-92).

Недостатком этого способа является весьма высокая энергоемкость производства в связи с необходимостью сплавления смеси при температуре 1600°C, дробления из состояния глыбы или обработки перегретым паром в автоклаве высокого давления.

Известен способ (патент РФ №2220906) получения жидкого стекла путем взаимодействия кремнеземсодержащего вещества с водным раствором гидроксида натрия при температуре 200-250°C. В качестве исходного кремнеземсодержащего вещества используют кварцевый песок фракции 0,1-0,315 мм, содержащий 95,5-98,15 мас.% диоксида кремния.

Недостатком способа является использование высокой температуры и, следовательно, высокие энергозатраты.

Известен способ (а.с. СССР №1801946) получения натриевого жидкого стекла путем приготовления суспензии из фторсодержащего кремнегеля, воды и концентрированного раствора гидроксида натрия, проведения гидротермальной обработки и отделения не прореагировавшего осадка.

Недостатком данного способа является использование кремнезема, содержащего фтор, на нейтрализацию которого дополнительно используется гидроксид натрия.

Наиболее близким к заявляемому техническому решению является способ получения жидкого стекла (патент РФ №2285665) путем гидротермальной обработки кремнеземсодержащего вещества с водным раствором гидроксида натрия. В качестве исходного кремнеземсодержащего вещества используют остаток, полученный после обработки серпентинита (серпентиниты - породы, состоящие в основном из минерала серпентина состава 3MgO·2SiO2·2H2O, затем магнетита, хромита и остатков первичных минералов [Словарь по геологии нефти. Гостоптехиздат, Ленинград, 1958 г., с. 600] соляной кислотой - аморфный диоксид кремния. Полученную суспензию фильтруют для удаления не прореагировавшего остатка, раствор концентрируют для получения жидкого стекла с заданными модулем и плотностью.

Недостатком данного способа является использование исходного материала (серпентинита) сложного химического состава с невысоким процентным содержанием диоксида кремния, необходимостью применения соляной кислоты и не широкое распространение месторождений серпентинита.

Техническим результатом изобретения является получение жидкого стекла с широким диапазоном силикатного модуля, расширение сырьевой базы для получения высокомодульного жидкого стекла за счет использования в качестве сырья отходов производства растительных масел при одновременном решении вопросов улучшения экологии окружающей среды за счет утилизации отходов производства, снижение себестоимости производства жидкого стекла и энергозатрат.

Технический результат достигается тем, что в способе изготовления жидкого стекла, включающем смешение кремнеземсодержащего вещества и раствора гидроксида натрия, последующую гидротермальную обработку полученной суспензии, фильтрование, концентрирование жидкого стекла, согласно изобретению в качестве кремнеземсодержащего вещества используют мелкодисперсную фракцию аморфного диоксида кремния с размером частиц не более (0,1-5,0)·10-6 м, полученную при регенерации отработанного при производстве растительных масел порошка кизельгура, не пригодную для повторного использования в производстве растительных масел, которую растворяют в гидроксиде натрия, имеющем концентрацию 200-250 г/дм3.

В предлагаемом способе используется кремнеземсодержащий аморфный материал кизельгур, имеющий гранулометрический состав: от 5 до 80 мкм (в среднем 35-50 мкм) и 87-92% SiO2, отработанный в процессе производства растительных масел для их очистки от восков. Поэтому использование отработанного при производстве растительного масла кизельгура при изготовлении жидкого стекла для производства строительных материалов существенно повышает безотходность производства растительных масел и снижает экологические проблемы. После обезжиривания порошка остаточное содержание жиров в нем составляет до 10% при влажности до 60%. Удаление такого порошка на промышленные свалки существенно ухудшает экологическую обстановку. Поэтому очень важно проводить глубокую регенерацию отработанного фильтровального порошка путем его прокаливания при температуре 550-650°C с целью полного удаления органических остатков и свободной влаги. В результате регенерированный порошок не содержит окисленных жировых остатков, но после глубокой регенерации в нем появляются мелкодисперсные частицы с размером не более (0,1-5,0)·10-6 м, составляющие до 30% от общего объема порошка. После отсеивания мелкодисперсной измельченной фракции, оставшийся порошок с размером частиц (5,0-80,0)·10-6 м может храниться не ограниченно долго, по адсорбционной активности полностью соответствует исходному и может повторно использоваться в производстве растительных масел для очистки от восков путем намывки фильтров. Мелкодисперсная измельченная фракция с размером не более (0,1-5,0)·10-6 м, появляющаяся после каждой последующей регенерации и являющаяся отходом процесса регенерации кизельгура, - идеальное сырье для изготовления жидкого стекла. За счет большой поверхности мелкодисперсная измельченная фракция кизельгура без дополнительного помола является быстрорастворимой компонентой в водном растворе гидроксида натрия (NaOH) при более низких термобарических условиях.

Этим расширяется область безотходного применения кизельгура при более низких энергетических затратах и сокращается время технологического цикла варки стекла. Получаемое при этом жидкое стекло имеет широкий диапазон плотности и находит применение в различных отраслях промышленности.

Проведенный заявителем анализ уровня техники по патентным и научно-техническим источникам информации позволил установить, что заявитель не обнаружил источник, характеризующийся отличительными признаками в заявленном способе получения жидкого стекла, изложенными в формуле изобретения.

Новизна предлагаемого способа заключается в том, что для получения жидкого стекла в качестве кремнеземсодержащего вещества используют мелкодисперсную фракцию аморфного диоксида кремния с размером частиц не более (0,1-5,0)·10-6 м, полученную при регенерации отработанного при производстве растительных масел порошка кизельгура. За счет большой поверхности мелкодисперсная измельченная фракция кизельгура без дополнительного помола является быстрорастворимой компонентой в водном растворе гидроксида натрия (NaOH), поэтому последующая гидротермальная обработка является низкотемпературной - при температуре 90-95°C и атмосферном давлении в течение 0,25-0,50 ч.

Предложенная совокупность признаков соответствует условию «новизна». Предложенный способ промышленно применим.

Примеры осуществления заявляемого способа.

Пример 1. Аморфный диоксид кремния, полученный путем регенерации отработанного в производстве растительных масел кизельгура, его фракционирования с отделением мелкодисперсных частиц размером не более (0,1-5,0)·10-6 м, не пригодных для повторного использования в производстве растительных масел, взятый в количестве 145,0 г, смешали с 310 см3 раствора гидроксида натрия концентрацией 250 г/дм3. Суспензию подвергли обработке при 95°C в течение 20 минут при перемешивании пульпы. Образовавшуюся пульпу с плотностью 1,30 г/см3 и объемом 380 см3 фильтровали для отделения не растворившегося остатка массой 27,1 г. Раствор, полученный после фильтрования, концентрировали при температуре 100°C. Получено 335 см3 жидкого стекла плотностью 1,41 г/см3, содержащего, мас.%: 28,10 SiO2; 9,68 Na2O; 0,17 водонерастворимых веществ. Силикатный модуль жидкого стекла 2,9.

Пример 2. Аморфный диоксид кремния, полученный путем регенерации отработанного в производстве растительных масел кизельгура, его фракционирования с отделением мелкодисперсных частиц размером не более (0,1-5,0)·10-6 м, не пригодных для повторного использования в производстве растительных масел, взятый в количестве 160,0 г, смешали с 315 см3 раствора гидроксида натрия концентрацией 200 г/дм3. Суспензию подвергли обработке при 95°C в течение 18 минут при перемешивании пульпы. Образовавшуюся пульпу с плотностью 1,31 г/см3 и объемом 405 см3 фильтровали для отделения не растворившегося остатка массой 26,2 г. Раствор, полученный после фильтрования, концентрировали при температуре 100°C. Получено 355 см3 жидкого стекла плотностью 1,40 г/см3, содержащего, мас.%: 28,90 SiO2; 9,62 Na2O; 0,16 водонерастворимых веществ. Силикатный модуль жидкого стекла 3,0.

Пример 3. Аморфный диоксид кремния, полученный путем регенерации отработанного в производстве растительных масел кизельгура, его фракционирования с отделением мелкодисперсных частиц размером не более (0,1-1,0)·10-6 м, не пригодных для повторного использования в производстве растительных масел, взятый в количестве 165,0 г, смешали с 345 см3 раствора гидроксида натрия концентрацией 240 г/дм3. Суспензию подвергли обработке при 95°C в течение 28 минут при ее перемешивании. Образовавшуюся пульпу с плотностью 1,37 г/см3 и объемом 425 см3 фильтровали для отделения не растворившегося остатка массой 29,3 г. Раствор, полученный после фильтрования, концентрировали при температуре 100°C. Получено 367 см3 жидкого стекла плотностью 1,39 г/см3, содержащего, мас.%: 28,17 SiO2; 9,54 Na2O; 0,18 водонерастворимых веществ. Силикатный модуль жидкого стекла 2,95.

Таким образом, предлагаемый способ позволяет получать натриевое жидкое стекло высокого качества с заданными силикатным модулем и плотностью, а также с низким содержанием примесей (Al2O3, Fe2O3, CaO) и водонерастворимых веществ (<0,10 мас.%) и соответствует требованиям ГОСТ 13078-81 «Стекло натриевое жидкое».

Похожие патенты RU2548097C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОМОДУЛЬНОГО ЖИДКОГО СТЕКЛА 2013
  • Цатурян Артур Сеникович
  • Красавцев Борис Евгеньевич
  • Симкин Владимир Борисович
  • Александрова Эльвира Александровна
  • Александров Борис Леонтьевич
RU2549407C1
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО СТЕКЛА 2013
  • Цатурян Артур Сеникович
  • Красавцев Борис Евгеньевич
  • Симкин Владимир Борисович
  • Александрова Эльвира Александровна
  • Александров Борис Леонтьевич
RU2548096C1
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО СТЕКЛА 2005
  • Щелконогов Анатолий Афанасьевич
  • Овчинникова Надежда Борисовна
  • Фрейдлина Руфина Григорьевна
  • Гулякин Александр Илларионович
  • Сабуров Лев Николаевич
  • Яковлева Светлана Анатольевна
  • Дудина Марина Владимировна
RU2285665C1
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО СТЕКЛА 2006
  • Щелконогов Анатолий Афанасьевич
  • Киселев Василий Александрович
  • Мальцев Николай Александрович
  • Фрейдлина Руфина Григорьевна
  • Овчинникова Надежда Борисовна
  • Яковлева Светлана Анатольевна
  • Дудина Марина Владимировна
RU2314997C2
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО СТЕКЛА 2011
  • Таук Матти Валдекович
  • Николаева Ирина Ивановна
  • Черкасова Татьяна Николаевна
RU2480409C1
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО СТЕКЛА 1993
  • Савин Е.М.
  • Павлов М.Л.
  • Видинеев Г.А.
  • Мозалевский Г.Т.
RU2057069C1
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО СТЕКЛА 1999
  • Шарова В.В.
  • Шихалеева А.А.
  • Подвольская Е.Н.
RU2172295C1
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО СТЕКЛА СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ 2000
  • Шарова В.В.
  • Подвольская Е.Н.
RU2171222C1
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО СТЕКЛА 1999
  • Шарова В.В.
  • Шихалеева А.А.
  • Подвольская Е.Н.
RU2171223C1
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО СТЕКЛА 2016
  • Доронин Андрей Вилорьевич
  • Щеголев Игорь Юрьевич
RU2620659C1

Реферат патента 2015 года СПОСОБ ИЗГОТОВЛЕНИЯ ЖИДКОГО СТЕКЛА

Изобретение относится к технологии изготовления жидкого стекла. Кремнеземсодержащее вещество смешивают с раствором гидроксида натрия. Полученную суспензию гидротермально обрабатывают, фильтруют. В качестве кремнеземсодержащего вещества используют мелкодисперсную фракцию аморфного диоксида кремния с размером частиц не более (0,1-5,0)·10-6 м, полученную при регенерации отработанного при производстве растительных масел порошка кизельгура. Изобретение позволяет получить жидкое стекло с широким диапазоном силикатного модуля. 3 пр.

Формула изобретения RU 2 548 097 C1

Способ изготовления жидкого стекла, включающий смешение кремнеземсодержащего вещества и раствора гидроксида натрия, последующую гидротермальную обработку полученной суспензии, фильтрование, концентрирование жидкого стекла, отличающийся тем, что в качестве кремнеземсодержащего вещества используют мелкодисперсную фракцию аморфного диоксида кремния с размером частиц не более (0,1-5,0)·10-6 м, полученную при регенерации отработанного при производстве растительных масел порошка кизельгура, не пригодного для повторного использования в производстве растительных масел, которые растворяют в гидроксиде натрия, имеющем концентрацию 200-250 г/дм3.

Документы, цитированные в отчете о поиске Патент 2015 года RU2548097C1

СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО СТЕКЛА 2005
  • Щелконогов Анатолий Афанасьевич
  • Овчинникова Надежда Борисовна
  • Фрейдлина Руфина Григорьевна
  • Гулякин Александр Илларионович
  • Сабуров Лев Николаевич
  • Яковлева Светлана Анатольевна
  • Дудина Марина Владимировна
RU2285665C1
Шпиндель станка 1972
  • Караим Иван Павлович
  • Протасеня Павел Игнатьевич
  • Давиденко Евгений Федорович
SU456707A1
JP 0057027922 A, 15.02.1982

RU 2 548 097 C1

Авторы

Цатурян Артур Сеникович

Красавцев Борис Евгеньевич

Симкин Владимир Борисович

Александрова Эльвира Александровна

Александров Борис Леонтьевич

Даты

2015-04-10Публикация

2013-09-30Подача