СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОПРОВОДНОСТИ ТВЕРДОГО ТЕЛА ЦИЛИНДРИЧЕСКОЙ ФОРМЫ ПРИ СТАЦИОНАРНОМ ТЕПЛОВОМ РЕЖИМЕ Российский патент 2015 года по МПК G01N25/18 

Описание патента на изобретение RU2551663C2

Изобретение относится к стационарным способам определения теплопроводности твердого тела. Разработанный способ может применяться в строительстве и теплоэнергетике для проведения в натурных условиях теплофизических исследований теплоизоляционных материалов, установленных на трубопроводах круглого сечения.

Способ включает контактное тепловое воздействие трубопроводом, выполненным из теплопроводного материала с известным коэффициентом теплопроводности, с движущимся внутри него теплоносителем на исследуемое твердое тело цилиндрической формы, плотно соприкасающееся с наружной поверхностью трубопровода, определение скорости движения и режима течения теплоносителя, измерение температуры наружной поверхности твердого тела, задание температуры внутренней поверхности трубопровода с учетом известной температуры теплоносителя и наружной поверхности твердого тела, определение коэффициентов теплоотдачи между теплоносителем и внутренней поверхностью трубопровода и наружной поверхностью твердого тела и окружающей средой, определение по уравнению теплопередачи для двухслойной цилиндрической стенки при стационарном тепловом режиме коэффициента теплопроводности твердого тела.

Известен способ определения теплопроводности материалов цилиндрическим зондом, который заключается во введении двух зондов в соответствующие им гильзы, заформованные в образце, изготовленном в виде бруска или цилиндра. На первый и второй зонды с определенной дискретностью во времени подают ток нагрева, регистрируют ЭДС термопар зондов в расчетные промежутки времени и по формуле для линейного источника тепла постоянной мощности определяют коэффициент теплопроводности образца [ГОСТ 30256-94. Материалы и изделия строительные. Метод определения теплопроводности цилиндрическим зондом. - Введ. 01.01.1996. - М.: ИПК Издательство стандартов, 1996. - 17 с.].

Недостатками данного способа являются техническая сложность подготовки к проведению тепловых испытаний, связанная с изготовлением образцов заданных геометрических размеров, заформовывание гильз в образцы, периодичность регистрации исходных данных для вычисления коэффициента теплопроводности материала.

Известен способ определения теплопроводности материалов, основанный на тепловом контакте плоского исследуемого образца известной толщины и плоского эталонного образца с известным тепловым сопротивлением. Между внешними плоскостями эталонного и исследуемого образцов создают заданную разность температур и в стационарном режиме измеряют температуру в плоскости теплового контакта. В эталонный образец предварительно устанавливают параллельно плоскости теплового контакта источник теплоты, разделяющий эталонный образец на внутреннюю часть и наружную часть с известным тепловым сопротивлением. Затем изменяют тепловой поток источника теплоты от нуля до такого значения, при котором перепад температуры на исследуемом образце становится равным половине заданной разности температуры. По достижению стационарного теплового режима через уравнение теплового баланса определяют коэффициент теплопроводности образца [Патент РФ № 2343466, кл. G01N 25/18, 2009].

К недостаткам данного способа можно отнести техническую сложность установки по реализации способа, которая включает внутренний источник теплоты с регулируемой плотностью теплового потока, эталонный образец с известным тепловым сопротивлением, адиабатизированные боковые поверхности и термостатируемую наружную плоскость исследуемого образца. К недостаткам также можно отнести ограниченность применения способа только на экспериментальных образцах в лабораторных условиях.

Наиболее близким способом к заявленному изобретению является способ определения теплопроводности материалов методом коаксиальных цилиндров. Цилиндрический зазор, образованный двумя коаксиально расположенными цилиндрами, заполняют исследуемым веществом. Слой исследуемого вещества ограничивают внутренним цилиндром с известным наружным диаметром и длиной и наружным цилиндром с известным внутренним диаметром. Во внутреннем цилиндре размещают основной нагреватель с известной тепловой мощностью. Для исключения торцевых потерь теплоты с внутреннего цилиндра в системе устройства предусматривают охранные цилиндры с охранными нагревателями. Рабочую разность температур поверхностей цилиндров, граничащих с исследуемым веществом, измеряют термопарами. Коэффициент теплопроводности материала определяют по уравнению теплопроводности для однослойной цилиндрической стенки при стационарном тепловом режиме [Теплоэнергетика и теплотехника. Теоретические основы теплотехники. Теплотехнический эксперимент: справочник / под общ. ред. А.В. Клименко и В.М. Зорина. - М.: Издательский дом МЭИ, 2007. - С.421].

К недостаткам данного способа можно отнести техническую сложность установки по реализации способа, которая включает два цилиндра, между которыми располагают исследуемое вещество, охранные цилиндры, предназначенные для устранения торцевых потерь теплоты с внутреннего цилиндра, и термопары, установленные на наружной поверхности внутреннего цилиндра и внутренней поверхности наружного цилиндра.

Целью изобретения является упрощение способа и повышение точности определения коэффициента теплопроводности твердого тела цилиндрической формы при стационарном тепловом режиме.

Поставленная цель достигается тем, что нагрев твердого тела цилиндрической формы осуществляют контактным способом с помощью трубопровода с движущимся внутри него теплоносителем. По известному массовому расходу и температуре теплоносителя определяют его скорость и режим течения. По известной скорости, режиму течения теплоносителя и предварительно заданной температуре внутренней поверхности трубопровода определяют коэффициент теплоотдачи между теплоносителем и внутренней поверхностью трубопровода. По известной температуре наружной поверхности твердого тела, измеренной контактным или бесконтактным измерителем температуры, и окружающей среды определяют коэффициент теплоотдачи между наружной поверхностью твердого тела и окружающей средой. По уравнению теплопередачи для двухслойной цилиндрической стенки при стационарном тепловом режиме определяют коэффициент теплопроводности твердого тела.

На фиг.1 и 2 показана принципиальная схема реализации способа.

На фиг.3 показан пример конкретной реализации способа определения коэффициента теплопроводности твердого тела цилиндрической формы при стационарном тепловом режиме.

В прямолинейном трубопроводе 1, изготовленном из теплопроводного материала с коэффициентом теплопроводности λ1, с внутренним диаметром d1 и толщиной стенки δ1 (фиг.1, 2), расположенном горизонтально относительно поверхности земли, находится подвижный теплоноситель 2 с массовым расходом G и температурой tж1. Температура tж1 теплоносителя 2 превышает значение температуры tж2 окружающей среды, т.е. tж1>tж2. Геометрическая длина участка l и внутренний диаметр d1 трубопровода 1 находятся в числовом соотношении l/d1>50. На наружной поверхности трубопровода 1 размещено твердое тело 3 цилиндрической формы с внутренним диаметром d2 и толщиной стенки δ2 и коэффициентом теплопроводности λ2. Внутренний диаметр твердого тела 3 численно равен наружному диаметру трубопровода 1. Наружный диаметр твердого тела 3 равен d3=d2+2δ2. Температура на наружной поверхности твердого тела 3 равна tc2, причем tс2>tж2. Ориентировочная температура внутренней поверхности трубопровода 1 равна t с 1 при условии, что t с 2 < t с 1 < t ж 1 .

Устройство для реализации предложенного способа работает следующим образом.

По горизонтальному прямолинейному трубопроводу 1 движется сплошной поток теплоносителя 2 с массовым расходом G и температурой tж1. В результате того, что температура tж1 теплоносителя 2 превышает значение температуры tж2 окружающей среды, возникает тепловой поток, направленный радиально от центральной оси трубопровода 1 в сторону окружающей среды. При движении теплового потока от теплоносителя 2 через трубопровод 1 и твердое тело 3 в окружающую среду происходит нагрев двухслойной цилиндрической стенки. Температуру tc2 на наружной поверхности твердого тела 3 измеряют контактным или бесконтактным измерителем температуры. С учетом известной температуры tж1 теплоносителя 2 и температуры tc2 наружной поверхности твердого тела 3 ориентировочно задают значение температуры t с 1 внутренней поверхности трубопровода 1 при условии, что t с 2 < t с 1 < t ж 1 .

Коэффициент теплопроводности λ2 твердого тела 3 цилиндрической формы определяют по уравнению теплопередачи:

где d1 - внутренний диаметр трубопровода 1; d2 - наружный диаметр трубопровода 1 и внутренний диаметр твердого тела 3; d3 - наружный диаметр твердого тела 3; tж1 - температура теплоносителя 2; tж2 - температура окружающей среды; tc2 - температура на наружной поверхности твердого тела 3; α1 и α2 - коэффициент теплоотдачи соответственно между теплоносителем 2 и внутренней поверхностью трубопровода 1 и наружной поверхностью твердого тела 3 и окружающей средой; λ1 - коэффициент теплопроводности трубопровода 1.

Коэффициенты теплоотдачи α1 и α2 из уравнения теплопередачи (1) определяют по эмпирическим уравнениям с применением теории подобия. Аналитическая форма записи уравнений для определения коэффициентов теплоотдачи α1 и α2 может быть представлена следующим образом:

где t с 1 - ориентировочная температура внутренней поверхности трубопровода 1; w - скорость движения теплоносителя 2; l - геометрическая длина участка трубопровода 1.

Скорость движения теплоносителя 2 в трубопроводе 1 определяют по уравнению неразрывности:

где G - массовый расход теплоносителя 2 в трубопроводе 1; ρ - плотность теплоносителя 2 при температуре tж1.

Достоинствами предложенного способа являются применение одного цилиндра, в качестве которого выступает трубопровод для контактного нагрева твердого тела цилиндрической формы, и измерение температуры только наружной поверхности твердого тела измерителем температуры.

Пример конкретной реализации способа.

Определим коэффициент теплопроводности λ2 твердого тела 3 (фиг.1, 2) цилиндрической формы на примере теплоизоляционной краски 2 (фиг.3) Teplomett Стандарт, размещенной на поверхности горизонтального прямолинейного трубопровода 1, выполненного из стали марки Ст3 с коэффициентом теплопроводности λ1=50,2 Вт/(м·K). Трубопровод 1 с размерами сечения d1=0,238 м и d2=0,250 м при δ3=6·10-3 м имеет длину участка l=12 м, при которой l/d1=12/0,238≈50,4>50. Наружный диаметр тепловой изоляции 2 при толщине слоя δ3=2,2·10-3 м равен d3=0,2544 м.

Теплоносителем в трубопроводе 1 является вода. Массовый расход и температура теплоносителя, движущегося в трубопроводе 1, соответственно равны G=250 т/ч и tж1=77°C. Температура окружающей среды, которой является внутренний воздух помещения, равна tж2=24°C. По результатам показаний контактного термометра ТК-5 температура на поверхности трубопровода 1, покрытого слоем теплоизоляционной краски 2, равна tс2=44,3°C. Ориентировочное значение температуры внутренней поверхности трубопровода 1 примем равным t с 1 = 70 C .

Скорость движения теплоносителя при плотности воды ρ=973,77 кг/м3 по уравнению неразрывности (4) составила w=1,603 м/с.

По результатам решения уравнений (2) и (3) коэффициенты теплоотдачи соответственно равны α1=5379 Вт/(м2·K) и α2=3,88 Вт/(м2·K). Температура внутренней поверхности трубопровода 1 по результатам проведенных расчетов равна tc1=77°C. Коэффициент теплопроводности λ2 тепловой изоляции 2 по уравнению теплопередачи (1) равен:

Значение коэффициента теплопроводности теплоизоляционной краски 2 Teplomett Стандарт, полученное по уравнению теплопередачи (1), сопоставимо с заявленным производителем коэффициентом теплопроводности материала 0,003 Вт/(м·K).

Похожие патенты RU2551663C2

название год авторы номер документа
УСТРОЙСТВО И СПОСОБ КОМПЛЕКСНОГО ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ТВЕРДОГО ТЕЛА 2013
  • Карпов Денис Федорович
  • Павлов Михаил Васильевич
  • Синицын Антон Александрович
  • Калягин Юрий Александрович
  • Суханов Игорь Андреевич
  • Мнушкин Николай Витальевич
RU2530473C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ ЖИДКОЙ ТЕПЛОВОЙ ИЗОЛЯЦИИ В НАТУРНЫХ УСЛОВИЯХ 2015
  • Павлов Михаил Васильевич
  • Карпов Денис Федорович
  • Синицын Антон Александрович
  • Погодин Денис Алексеевич
  • Гаврилов Юрий Сергеевич
  • Монаркин Николай Николаевич
  • Мнушкин Николай Витальевич
  • Агафонов Владимир Александрович
  • Березин Павел Сергеевич
  • Беляев Кирилл Юрьевич
  • Маслова Марина Владимировна
RU2602595C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРОПРОВОДНОСТИ ТВЕРДОГО ТЕЛА ПРИ НЕСТАЦИОНАРНОМ ТЕПЛОВОМ РЕЖИМЕ 2012
  • Павлов Михаил Васильевич
  • Карпов Денис Федорович
  • Синицын Антон Александрович
RU2502989C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОПРОВОДНОСТИ ТВЕРДОГО ТЕЛА АКТИВНЫМ МЕТОДОМ ТЕПЛОВОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ 2012
  • Карпов Денис Федорович
  • Павлов Михаил Васильевич
  • Синицын Антон Александрович
  • Игонин Владимир Иванович
RU2488102C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ ЖИДКОЙ ТЕПЛОВОЙ ИЗОЛЯЦИИ В ЛАБОРАТОРНЫХ УСЛОВИЯХ 2014
  • Павлов Михаил Васильевич
  • Карпов Денис Федорович
  • Синицын Антон Александрович
  • Мнушкин Николай Витальевич
  • Монаркин Николай Николаевич
RU2568983C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ ЖИДКОЙ ТЕПЛОВОЙ ИЗОЛЯЦИИ НА ПОВЕРХНОСТИ ПЛОСКОГО ИСТОЧНИКА ТЕПЛОТЫ 2015
  • Павлов Михаил Васильевич
  • Карпов Денис Федорович
  • Синицын Антон Александрович
  • Погодин Денис Алексеевич
  • Мнушкин Николай Витальевич
  • Агафонов Владимир Александрович
  • Беляев Кирилл Юрьевич
  • Березин Павел Сергеевич
  • Писаренко Виктор Анатольевич
  • Писаренко Евгения Петровна
  • Горин Николай Михайлович
  • Тихов Андрей Евгеньевич
  • Ермалюк Михаил Петрович
  • Березина Валерия Павловна
RU2610348C1
СПОСОБ ИССЛЕДОВАНИЯ НЕСТАЦИОНАРНОГО ТЕПЛОВОГО РЕЖИМА ТВЕРДОГО ТЕЛА 2012
  • Карпов Денис Федорович
  • Павлов Михаил Васильевич
  • Синицын Антон Александрович
  • Калягин Юрий Александрович
  • Гаврилов Юрий Сергеевич
RU2518224C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ ЖИДКОЙ ТЕПЛОВОЙ ИЗОЛЯЦИИ ПРИ НЕСТАЦИОНАРНОМ ТЕПЛОВОМ РЕЖИМЕ 2016
  • Павлов Михаил Васильевич
  • Карпов Денис Федорович
  • Погодин Денис Алексеевич
  • Монаркин Николай Николаевич
  • Агафонов Владимир Александрович
  • Беляев Кирилл Юрьевич
  • Березин Павел Сергеевич
  • Ермалюк Михаил Петрович
  • Тихов Андрей Евгеньевич
  • Туманова Наталия Сергеевна
  • Березина Валерия Павловна
  • Карпов Фёдор Дмитриевич
RU2646437C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОПРОВОДНОСТИ СЫПУЧИХ МАТЕРИАЛОВ ПРИ НЕСТАЦИОНАРНОМ ТЕПЛОВОМ РЕЖИМЕ 2012
  • Павлов Михаил Васильевич
  • Карпов Денис Федорович
  • Синицын Антон Александрович
  • Калягин Юрий Александрович
RU2502988C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОПРОВОДНОСТИ И ТЕМПЕРАТУРОПРОВОДНОСТИ ТВЕРДОГО ТЕЛА ПРИ НЕСТАЦИОНАРНОМ ТЕПЛОВОМ РЕЖИМЕ 2011
  • Игонин Владимир Иванович
  • Карпов Денис Федорович
  • Павлов Михаил Васильевич
RU2460063C1

Иллюстрации к изобретению RU 2 551 663 C2

Реферат патента 2015 года СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОПРОВОДНОСТИ ТВЕРДОГО ТЕЛА ЦИЛИНДРИЧЕСКОЙ ФОРМЫ ПРИ СТАЦИОНАРНОМ ТЕПЛОВОМ РЕЖИМЕ

Изобретение относится к стационарным способам определения теплопроводности твердого тела и может быть использовано в строительстве и теплоэнергетике для проведения в натурных условиях теплофизических исследований теплоизоляционных материалов, установленных на трубопроводах круглого сечения. Сущность способа заключается в нагреве твердого тела цилиндрической формы контактным способом с помощью трубопровода с движущимся внутри него теплоносителем. По известному массовому расходу и температуре теплоносителя определяют его скорость и режим течения. По известной скорости, режиму течения теплоносителя и предварительно заданной температуре внутренней поверхности трубопровода определяют коэффициент теплоотдачи между теплоносителем и внутренней поверхностью трубопровода. По известной температуре наружной поверхности твердого тела, измеренной контактным или бесконтактным измерителем температуры, и окружающей среды определяют коэффициент теплоотдачи между наружной поверхностью твердого тела и окружающей средой. По уравнению теплопередачи для двухслойной цилиндрической стенки при стационарном тепловом режиме определяют коэффициент теплопроводности твердого тела. Технический результат - повышение точности определения коэффициента теплопроводности твердого тела цилиндрической формы при стационарном тепловом режиме. 4 ил.

Формула изобретения RU 2 551 663 C2

Способ определения теплопроводности твердого тела цилиндрической формы при стационарном тепловом режиме, включающий нагрев твердого тела цилиндрической формы контактным способом с помощью трубопровода с движущимся внутри него теплоносителем, измерение температуры наружной поверхности твердого тела, определение коэффициента теплопроводности твердого тела при стационарном тепловом режиме, отличающийся тем, что по известному массовому расходу и температуре теплоносителя определяют его скорость и режим течения, по известной скорости, режиму течения теплоносителя и предварительно заданной температуре внутренней поверхности трубопровода определяют коэффициент теплоотдачи между теплоносителем и внутренней поверхностью трубопровода, по известной температуре наружной поверхности твердого тела, измеренной контактным или бесконтактным измерителем температуры, и окружающей среды определяют коэффициент теплоотдачи между наружной поверхностью твердого тела и окружающей средой, по уравнению теплопередачи для двухслойной цилиндрической стенки при стационарном тепловом режиме:
,
где d1 - внутренний диаметр трубопровода; d2 - наружный диаметр трубопровода и внутренний диаметр твердого тела; d3 - наружный диаметр твердого тела; tж1 - температура теплоносителя; tж2 - температура окружающей среды; tc2 - температура на наружной поверхности твердого тела; α1 и α2 - коэффициент теплоотдачи соответственно между теплоносителем и внутренней поверхностью трубопровода и наружной поверхностью твердого тела и окружающей средой; λ1 - коэффициент теплопроводности трубопровода, определяют коэффициент теплопроводности твердого тела.

Документы, цитированные в отчете о поиске Патент 2015 года RU2551663C2

"ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ТЕПЛОТЕХНИКИ.ТЕПЛОТЕХНИЧЕСКИЙ ЭКСПЕРИМЕНТ:СПРАВОЧНИК", под редакцией А.В.КЛИМЕНКО, В.М.ЗОРИНА, Москва:Издательский дом МЭИ, 2007 г., стр.421
Серийный штамп для изготовления стрелок часов 1932
  • Баженов(-А) В.А.
  • Баженов(-А) Е.А.
SU30256A1
МАТЕРИАЛЫ И ИЗДЕЛИЯ СТРОИТЕЛЬНЫЕ
МЕТОД ОПРЕДЕЛЕНИЯ ТЕПЛОПРОВОДНОСТИ ЦИЛИНДРИЧЕСКИМ ЗОНДОМ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОПРОВОДНОСТИ МАТЕРИАЛОВ 2007
  • Соколов Николай Александрович
RU2343466C1
SU 757949 А1, 25.08.1980
Устройство для измерения эффективной радиационной теплопроводности 1978
  • Данилова Галина Николаевна
  • Цветков Олег Борисович
  • Лаптев Юрий Александрович
  • Васильков Анатолий Иосифович
SU697895A1

RU 2 551 663 C2

Авторы

Павлов Михаил Васильевич

Карпов Денис Федорович

Синицын Антон Александрович

Калягин Юрий Александрович

Гаврилов Юрий Сергеевич

Юрчик Марина Сергеевна

Мнушкин Николай Витальевич

Даты

2015-05-27Публикация

2013-07-18Подача