Изобретение относится к нестационарным способам определения температуропроводности твердых тел. Разработанный способ может применяться в строительстве и теплоэнергетике при проведении тепловых испытаний однородных строительных объектов, теплопроводных и теплоизоляционных материалов.
Способ включает бесконтактное тепловое воздействие на исследуемое твердое тело с помощью источника инфракрасного излучения, период нагрева твердого тела, определение зоны нестационарного теплового режима твердого тела при нагреве последнего, регистрацию температурного поля твердого тела с помощью системы термопреобразователей, построение одномерного нестационарного температурного поля твердого тела по экспериментальным данным, вычисление по дифференциальному уравнению теплопроводности коэффициента температуропроводности твердого тела.
Известен способ а-калориметра для определения температуропроводности твердого тела, заключающийся в охлаждении исследуемого материала в среде с интенсивной теплоотдачей при Bi→∝. Тогда между искомой величиной температуропроводности и темпом охлаждения твердого тела существует линейная зависимость. Темп охлаждения определяют по показаниям дифференциальной термопары, спаи которой монтируют в центральной зоне образца и в среде с интенсивной теплоотдачей. Коэффициент пропорциональности, математически связывающий коэффициент температуропроводности твердого тела с темпом охлаждения, зависит от геометрических параметров исследуемого образца [Теплотехнический справочник: справочник. В 2-х т. / под общ. ред. В.Н. Юренева, П.Д. Лебедева. - М.: Энергия, 1976. - Т. 2. - С.311-312].
Недостатком данного способа является техническая сложность организации и проведения тепловых измерений, так как для реализации рассматриваемого способа необходимо наличие а-калориметра, предварительно нагретого до высоких температур в сушильном шкафу, и жидкостного термостата с интенсивным перемешиванием среды, обеспечивающего условие Bi→∝.
Известен способ комплексного определения теплофизических характеристик вещества, одной из которых является коэффициент температуропроводности. Сущность предложенного способа заключается во введении теплового импульса известной величины в исследуемое вещество, после которого измеряют время перемещения максимума температуры от точки теплового импульса до точки, отстоящей от источника теплоты на известном расстоянии. По известному расстоянию и времени прохождения температурного максимума от точки теплового импульса до заданной точки вещества расчетным способом определяют коэффициент температуропроводности тела [Патент РФ 2216011, кл. G01N 25/18, 2001].
К недостаткам данного способа можно отнести техническую сложность подачи теплового импульса в заданную точку вещества и экспериментального определения его величины, а также вероятность непредвиденных погрешностей при измерении времени перемещения максимума температуры от источника теплоты до конечной точки вещества в связи с неорганизованной диссипацией энергии в окружающую среду.
Наиболее близким способом к заявленному изобретению является способ определения температуропроводности твердого тела методом непрерывного нагрева. Образец в виде круглого стержня, в среднем сечении которого на оси и поверхности закреплены термопары, помещают в электрический нагреватель и разогревают. По известному радиальному расстоянию между фиксированными точками на оси и поверхности образца, а также времени запаздывания температурного максимума на оси образца по сравнению с температурой на его поверхности вычисляют коэффициент температуропроводности материала [Теплотехнический справочник: справочник. В 2-х т. / под общ. ред. В.Н. Юренева, П.Д. Лебедева. - М.: Энергия, 1976. - Т.2. - С.313].
Недостатками данного способа являются неконтролируемое время перемещения температурного максимума от поверхности тела к его центру, а также математическая сложность определения поправок, учитывающих влияние непостоянства скорости нагревания и зависимости теплофизических параметров от температуры, при вычислении коэффициента температуропроводности материала.
Целью изобретения является повышение точности измерения коэффициента температуропроводности твердого тела при нестационарном тепловом режиме, уменьшение числа стадий эксперимента и упрощение способа его проведения.
Поставленная цель достигается тем, что нагрев твердого тела осуществляют с помощью бесконтактного теплового воздействия на переднюю лицевую поверхность (далее ПЛП) последнего источником инфракрасного излучения. Температурное поле твердого тела регистрируют с помощью системы термопреобразователей в течение нестационарного теплового режима, определяемого расчетным способом. По экспериментальным данным строят одномерное нестационарное температурное поле твердого тела. По результатам построения температурного поля твердого тела в режиме нагрева и дифференциальному уравнению теплопроводности вычисляют коэффициент температуропроводности твердого тела.
На фиг.1 показана принципиальная схема реализации способа.
На фиг.2 показана схема расположения термопреобразователей в твердом теле.
На фиг.3 показаны фотографии устройства, с помощью которого реализуют заявленный способ определения температуропроводности твердого тела на примере силикатного кирпича.
На фиг.4 показаны расчетная
На фиг.5 показано одномерное температурное поле силикатного кирпича на участке нестационарного теплового режима.
На фиг.6 показана функция изменения коэффициента температуропроводности вида
Источник инфракрасного излучения 1 работает от электрической сети (фиг.1). Исследуемое твердое тело 2 в форме параллелепипеда толщиной δ=2h расположено на некотором расстоянии от источника инфракрасного излучения 1. Центральная ось инфракрасного излучателя 1 и твердого тела 2 совпадают. На участке
Устройство для реализации предложенного способа работает следующим образом.
В начальный момент времени τ=0 температурное поле твердого тела 2 однородно и численно равно температуре окружающей среды. С момента реализации заявленного способа энергия в форме электричества поступает из электрической сети к источнику инфракрасного излучения 1, который преобразует и передает бесконтактно часть энергии в виде электромагнитного излучения ПЛП твердого тела 2. Поток инфракрасного излучения, равномерно падающий на ПЛП исследуемого твердого тела 2, преобразуется в теплоту, которая идет на нагрев всего объема твердого тела 2. Инфракрасный излучатель 1 облучает ПЛП твердого тела 2 равномерно, следовательно, изменение температуры в твердом теле 2 происходит только в одном направлении - вдоль оси 0Х, а в двух других направлениях (по координатам 0Y и 0Z) температура твердого тела 2 не изменяется, т.е. ∇yt=∇zt=0. Изменения температур твердого тела 2 вдоль оси 0Х регистрируют термопреобразователи 3: Т0, Т1 и Т2 (фиг.2), передающие информацию через АЦП и конвертер (условно не показаны) на энергонезависимую память компьютера (условно не показан).
Продолжительность нестационарного теплового режима твердого тела 2 определяют по формуле:
где δ - толщина твердого тела 2;
Пусть по данным термопреобразователей 3 известно температурное поле твердого тела 2 и его уравнение вида
где t - температура твердого тела 2; х - координата; τ - время.
Достоинством предложенного способа является бесконтактный нагрев твердого тела источником инфракрасного излучения, возможность аналитическим способом устанавливать продолжительность проведения эксперимента и выбирать произвольный участок температурного поля твердого тела, входящий в расчетный интервал времени, для вычисления его коэффициента температуропроводности, уменьшение числа стадий проведения эксперимента (только стадия нагрева твердого тела), математическая простота и компактность итогового уравнения для вычисления коэффициента температуропроводности твердого тела.
Пример конкретной реализации способа.
Определим коэффициент температуропроводности твердого тела на примере силикатного кирпича 2 марки M150 (ГОСТ 379-95) толщиной δ=0,120 м (h=0,06 м) (фиг.3). Спаи хромель-алюмелевых термопар 3: Т0, Т1 и Т2 закреплены в толще силикатного кирпича 2 вдоль центральной оси соответственно в точках с координатами х=0, 0,03 и 0,06 м. В качестве источника инфракрасного излучения использован электрический инфракрасный излучатель 1 марки Эколайн 10 R суммарной мощностью 3 кВт, расположенный на расстоянии 0,6 м от передней лицевой поверхности силикатного кирпича 2. Предварительное значение температуропроводности силикатного кирпича 2 равно
Рассмотрим тепловой режим участка
где a=22,830014, b=0,010623358, с=-481,12022, d=-6,1933549·10-7, е=10518,343, f=-0,014857501; g=1,2080758·10-11; h=-79288,783; i=-0,44211261; j=2,4679544·10-6 - параметры уравнения.
На фиг.6 по результатам решения уравнения (2) получен график изменения коэффициента температуропроводности силикатного кирпича 2 в режиме нагрева при
Значение коэффициента температуропроводности at силикатного кирпича 2 в начальный момент времени τ=0 по уравнение (4) равно 5,0896·10-7 м2/с (при температуре силикатного кирпича t=19,7°С, равной температуре окружающей среды), что сопоставимо с нормативным значением 5,49·10-7 м2/с, приведенным в СП 23-101-2004.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО И СПОСОБ КОМПЛЕКСНОГО ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ТВЕРДОГО ТЕЛА | 2013 |
|
RU2530473C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОПРОВОДНОСТИ И ТЕМПЕРАТУРОПРОВОДНОСТИ ТВЕРДОГО ТЕЛА ПРИ НЕСТАЦИОНАРНОМ ТЕПЛОВОМ РЕЖИМЕ | 2011 |
|
RU2460063C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОПРОВОДНОСТИ ТВЕРДОГО ТЕЛА АКТИВНЫМ МЕТОДОМ ТЕПЛОВОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ | 2012 |
|
RU2488102C1 |
СПОСОБ ИССЛЕДОВАНИЯ НЕСТАЦИОНАРНОГО ТЕПЛОВОГО РЕЖИМА ТВЕРДОГО ТЕЛА | 2012 |
|
RU2518224C1 |
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРОПРОВОДНОСТИ ПСЕВДООЖИЖЕННОГО СЛОЯ В НАПРАВЛЕНИИ, ПРОДОЛЬНОМ ПОТОКУ ОЖИЖАЮЩЕГО ГАЗА | 2020 |
|
RU2748141C1 |
УСТРОЙСТВО ДЛЯ БЕСКОНТАКТНОГО ОПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ТВЕРДЫХ ТЕЛ | 2018 |
|
RU2701881C1 |
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК ТВЕРДЫХ МАТЕРИАЛОВ | 2004 |
|
RU2250454C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРОПРОВОДНОСТИ ОПТИЧЕСКИ ПРОЗРАЧНЫХ МАТЕРИАЛОВ | 2019 |
|
RU2725695C1 |
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ И ИЗДЕЛИЙ | 2014 |
|
RU2574229C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КИНЕТИЧЕСКИХ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ КОМПОЗИТНЫХ МАТЕРИАЛОВ | 2020 |
|
RU2753620C1 |
Изобретение относится к нестационарным способам определения температуропроводности твердых тел и может применяться в строительстве и теплоэнергетике при проведении тепловых испытаний однородных строительных объектов, теплопроводных и теплоизоляционных материалов. Сущность заявленного способа заключается в нагреве твердого тела с помощью бесконтактного теплового воздействия на переднюю лицевую поверхность последнего источником инфракрасного излучения. Температурное поле твердого тела регистрируют с помощью системы термопреобразователей в течение нестационарного теплового режима, определяемого расчетным способом. По экспериментальным данным строят одномерное нестационарное температурное поле твердого тела. По результатам построения температурного поля твердого тела в режиме нагрева и дифференциальному уравнению теплопроводности вычисляют коэффициент температуропроводности твердого тела. Технический результат: повышение точности измерения коэффициента температуропроводности твердого тела при нестационарном тепловом режиме. 6 ил.
Способ определения температуропроводности твердого тела при нестационарном тепловом режиме, включающий предварительное нагревание твердого тела, использование термопреобразователей в качестве средств измерений теплового режима твердого тела, отличающийся тем, что нагрев твердого тела осуществляют бесконтактным тепловым воздействием на переднюю лицевую поверхность твердого тела с помощью источника инфракрасного излучения, температурное поле твердого тела регистрируют в течение нестационарного теплового режима, определяемого расчетным способом, по экспериментальным данным строят одномерное нестационарное температурное поле твердого тела вида t=t(x,τ), где t - температура твердого тела; х - координата; τ - время, по результатам построения температурного поля твердого тела в режиме нагрева и дифференциальному уравнению теплопроводности:
вычисляют коэффициент температуропроводности твердого тела.
ФОКИН В.М., КОВЫЛИН А.В | |||
и др | |||
Энергоэффективные методы определения теплофизических свойств строительных материалов и изделий | |||
- М.: Издательский дом "Спектр", 2011, с.76-80 | |||
СПОСОБ КОМПЛЕКСНОГО ОПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК ВЕЩЕСТВА | 2001 |
|
RU2216011C2 |
СПОСОБ НЕРАЗРУШАЮЩЕГО ОПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ МАТЕРИАЛОВ | 1999 |
|
RU2161301C2 |
Нестационарный способ определения истинного коэффициента теплопроводности сильнорассеивающих материалов | 1991 |
|
SU1784890A1 |
Способ определения коэффициента температуропроводности твердых тел | 1979 |
|
SU855464A1 |
US 20110106485 A1, 05.05.2011. |
Авторы
Даты
2013-12-27—Публикация
2012-07-12—Подача