Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС в зимний период времени.
Аналогом является способ работы тепловой электрической станции, по которому весь поток обратной сетевой воды, возвращаемый от потребителей, последовательно нагревают паром отборов турбины в нижнем и в верхнем сетевых подогревателях, а затем направляют потребителям, охлаждение отработавшего пара производят циркуляционной водой, которую используют в качестве источника низкопотенциальной теплоты для испарителя теплонасосной установки, при этом весь поток сетевой воды после нижнего сетевого подогревателя дополнительно подогревают в конденсаторе теплонасосной установки (патент RU №2269656, МПК F01K 17/02, 10.02.2006).
Прототипом является способ работы тепловой электрической станции, содержащей подающий и обратный трубопроводы сетевой воды, паровую турбину с отопительными отборами пара и конденсатором, к которому подключены напорный и сливной трубопроводы циркуляционной воды, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами сетевой воды и подключенные по греющей среде к отопительным отборам, теплонасосную установку, испаритель которой подключен по греющей среде к сливному трубопроводу циркуляционной воды, при этом конденсатор теплонасосной установки по нагреваемой среде включен в подающий трубопровод сетевой воды после сетевых подогревателей (патент RU №2268372, МПК F01K 17/02, 20.01.2006).
В известном способе сетевую воду, поступающую от потребителей по обратному трубопроводу сетевой воды, с помощью сетевого насоса подают в сетевые подогреватели, где нагревают паром отопительных отборов турбины. Отработавший в турбине пар охлаждают в конденсаторе, для чего подают в него по напорному трубопроводу и отводят по сливному трубопроводу циркуляционную воду. Нагретую в сетевых подогревателях сетевую воду перед подачей потребителям дополнительно нагревают в конденсаторе теплонасосной установки, в качестве низкопотенциального источника теплоты в испарителе теплонасосной установки используют циркуляционную воду из сливного трубопровода.
Таким образом, в известном способе работы тепловой электрической станции отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости.
Основным недостатком аналога и прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии из-за отсутствия полной утилизации сбросной скрытой теплоты парообразования в конденсаторе паровой турбины для дополнительной выработки электроэнергии, обусловленной использованием вторичного контура (теплонасосной установки). Кроме этого, недостатком является низкий ресурс и надежность работы конденсатора паровой турбины из-за использования технической (циркуляционной) воды, которая загрязняет конденсатор паровой турбины.
Из-за повышенных тепловых выбросов циркуляционной воды в водоем-охладитель в зимний период времени нарушается его экосистема.
Задачей изобретения является повышение коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты для дополнительной выработки электрической энергии, повышение ресурса и надежности работы конденсатора паровой турбины и снижение тепловых выбросов в окружающую среду.
Технический результат достигается тем, что в способе работы тепловой электрической станции, по которому отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости, согласно настоящему изобретению утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе теплового двигателя, нагревают и испаряют в конденсаторе паровой турбины, расширяют в турбодетандере теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.
В качестве теплообменника-конденсатора теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.
В качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO2.
Таким образом, технический результат достигается за счет полной утилизации сбросной низкопотенциальной теплоты (скрытой теплоты парообразования), которую осуществляют путем нагрева, в конденсаторе паровой турбины, низкокипящего рабочего тела (сжиженного углекислого газа CO2) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.
Сущность изобретения поясняется фиг.1, на которой представлена тепловая электрическая станция, имеющая тепловой двигатель с теплообменником-конденсатором.
На фиг.1 цифрами обозначены:
1 - паровая турбина,
2 - конденсатор паровой турбины,
3 - конденсатный насос конденсатора паровой турбины,
4 - основной электрогенератор,
5 - тепловой двигатель с замкнутым контуром циркуляции,
6 - турбодетандер,
7 - электрогенератор,
8 - теплообменник-конденсатор,
9 - конденсатный насос.
Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, а также основной электрогенератор 4, соединенный с паровой турбиной 1.
В тепловую электрическую станцию введен тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина.
Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер 6 с электрогенератором 7, теплообменник-конденсатор 8 и конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом конденсатора 2 паровой турбины, выход которого соединен по нагреваемой среде с входом турбодетандера 6, образуя замкнутый контур охлаждения.
Способ работы тепловой электрической станции осуществляют следующим образом.
Отработавший пар поступает из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара при помощи охлаждающей жидкости.
Отличием предлагаемого способа является то, что утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара осуществляют при помощи теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе 9 теплового двигателя, нагревают и испаряют в конденсаторе 2 паровой турбины, расширяют в турбодетандере 6 теплового двигателя и конденсируют в теплообменнике-конденсаторе 8 теплового двигателя.
В качестве теплообменника-конденсатора 8 теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.
В качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO2.
Пример конкретного выполнения.
Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный углекислый газ CO2).
Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.
Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации.
Преобразование сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара в механическую и далее в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.
Таким образом, утилизацию сбросной низкопотенциальной теплоты (скрытой теплоты парообразования) осуществляют путем нагрева, в конденсаторе 2 паровой турбины 1, низкокипящего рабочего тела (сжиженного углекислого газа CO2) теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.
Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного углекислого газа CO2, который направляют на нагрев и испарение в конденсатор 2 паровой турбины, куда поступает отработавший в турбине 1 пар.
Температура кипения сжиженного углекислого газа CO2 сравнительна низка (292,26 К при давлении 5,61 МПа), поэтому в конденсаторе 2 паровой турбины он быстро испаряется и переходит в газообразное состояние, после чего, имея температуру перегретого газа, его направляют в турбодетандер 6.
Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации углекислого газа CO2 в ходе срабатывания теплоперепада.
Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 углекислый газ CO2 имеет температуру около 278 К с влажностью, не превышающей 12%.
Далее, при снижении температуры углекислого газа CO2, происходит его сжижение в теплообменнике-конденсаторе 8, выполненном, например, в виде конденсатора воздушного охлаждения, охлаждаемого низкотемпературным воздухом окружающей среды в температурном диапазоне от 223,15 К до 273,15 К.
После теплообменника-конденсатора 8 в сжиженном состоянии углекислый газ CO2 направляют для сжатия в конденсатный насос 9 теплового двигателя.
Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.
Использование предлагаемого способа работы тепловой электрической станции позволит по сравнению с прототипом повысить коэффициент полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты для дополнительной выработки электрической энергии, повысить ресурс и надежность работы конденсатора паровой турбины и снизить тепловые выбросы в окружающую среду.
Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин в зимний период времени. Раскрыт способ работы тепловой электрической станции, по которому используют тепловой двигатель (5) с замкнутым контуром циркуляции, который работает по органическому циклу Ренкина. В тепловом двигателе (5) в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре. Рабочее тело расширяют в турбодетандере (6) теплового двигателя (5), конденсируют в теплообменнике-конденсаторе (8) и сжимают в конденсатном насосе (9). Отработавший пар поступает из паровой турбины (1) в паровое пространство конденсатора (2) паровой турбины, конденсируется на поверхности конденсаторных трубок. Конденсат с помощью конденсатного насоса (3) конденсатора (2) паровой турбины направляют в систему регенерации. При помощи указанного теплового двигателя (5) осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине (1) пара. При этом тепловой двигатель (5) используют при конденсации отработавшего в турбине (1) пара. Низкокипящее рабочее тело, после его сжатия в конденсатном насосе (9) теплового двигателя (5), нагревают и испаряют в конденсаторе (2) паровой турбины, используя скрытую теплоту парообразования, которую отводят при помощи низкокипящего рабочего тела, циркулирующего в замкнутом контуре, в турбодетандер (6) теплового двигателя. Расширение низкокипящего рабочего тела осуществляют до температуры насыщения с влажностью, не превышающей 12%. Изобретение позволяет повысить коэффициент полезного действия тепловой электрической станции за счет полного использования сбросной низкопотенциальной теплоты для дополнительной выработки электрической энергии, а также для повышения ресурса и надежности работы конденсатора паровой турбины. 2 з.п. ф-лы, 1 ил.
1. Способ работы тепловой электрической станции, по которому используют тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его расширяют в турбодетандере теплового двигателя, конденсируют в теплообменнике-конденсаторе теплового двигателя и сжимают в конденсатном насосе теплового двигателя, причем отработавший пар поступает из паровой турбины в паровое пространство конденсатора паровой турбины, конденсируется на поверхности конденсаторных трубок, а конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, отличающийся тем, что при помощи указанного теплового двигателя осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара, при этом тепловой двигатель используют при конденсации отработавшего в турбине пара, причем низкокипящее рабочее тело, после его сжатия в конденсатном насосе теплового двигателя, нагревают и испаряют в конденсаторе паровой турбины, используя скрытую теплоту парообразования, которую отводят при помощи низкокипящего рабочего тела, циркулирующего в замкнутом контуре, в турбодетандер теплового двигателя, а расширение низкокипящего рабочего тела осуществляют до температуры насыщения с влажностью, не превышающей 12%.
2. Способ работы тепловой электрической станции по п. 1, отличающийся тем, что в качестве низкокипящего рабочего тела используют сжиженный углекислый газ СO2, который нагревают в конденсаторе паровой турбины до температуры, при которой он испаряется.
3. Способ работы тепловой электрической станции по п. 1, отличающийся тем, что в качестве теплообменника-конденсатора теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.
ГАФУРОВ А.М | |||
и др | |||
Пишущая машина | 1922 |
|
SU37A1 |
Скоропечатный станок для печатания со стеклянных пластинок | 1922 |
|
SU35A1 |
РЫЖКИН В.Я | |||
Тепловые электрические станции, М | |||
Энергия, 1976, с | |||
Способ получения молочной кислоты | 1922 |
|
SU60A1 |
Кипятильник для воды | 1921 |
|
SU5A1 |
US 4296802 А, 27.10.1981 | |||
ЭНЕРГОАККУМУЛИРУЮЩАЯ УСТАНОВКА | 2004 |
|
RU2273742C1 |
US 5632143 А, 27.05.1997 | |||
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕДАЧИ ТЕПЛА ОТ ИСТОЧНИКА ТЕПЛА К ТЕРМОДИНАМИЧЕСКОМУ ЦИКЛУ С РАБОЧЕЙ СРЕДОЙ С ПО КРАЙНЕЙ МЕРЕ ДВУМЯ ВЕЩЕСТВАМИ С НЕИЗОТЕРМИЧЕСКИМ ИСПАРЕНИЕМ И КОНДЕНСАЦИЕЙ | 2005 |
|
RU2358129C2 |
Авторы
Даты
2015-06-10—Публикация
2013-12-27—Подача