СПОСОБ ВИБРАЦИОННЫХ ИСПЫТАНИЙ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ Российский патент 2015 года по МПК G01M7/00 

Описание патента на изобретение RU2556287C2

Изобретение относится к испытательной технике. Целью изобретения является разработка способа вибрационных испытаний, который предусматривает воздействие на изделие гармонической вибрации, лимитирующей реальный случайный процесс, и который заменяет испытание изделия на транспортирование. Способ включает операцию определения в аналитическом определении импульсов силы вибрационного воздействия в диапазоне частот от 5 до 60 Гц (высокие частоты смысла не имеют) и сравнение их с импульсом силы транспортировочного воздействия для замены его близким к ударному вибрационным воздействием. Частота, на которой выполняется критерий Iгв≥Iу, является рабочей и на ней следует проводить испытание на транспортирование.

Новым в способе является определение Iгв, Iу и рабочей частоты для использования во время эквивалентных испытаний. Значения Iгв и рабочей частоты находятся методом последовательных итераций.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к испытательной технике, а именно к способам проведения вибрационных испытаний, предусматриющим воздействие на испытуемый объект гармонической вибрации, имитирующей реальный ударный импульс. Необходимость такой замены возникает в ряде практически важных случаев: отсутствие соответствующего испытательного оборудования, у имеющегося оборудования не хватает мощности, при больших габаритах изделия. Действующие на прибор радиоэлектронной аппаратуры (РЭА) механические воздействия сложной формы на лабораторном оборудовании воспроизводятся со значительными погрешностями. Особенно, если изделие имеет большие массу и габариты, происходит наложение различных форм колебаний, за которыми задающие параметры колебания рассмотреть порой невозможно. При этом динамические характеристики (жесткости и демпфирование), резонансная частота и т.п. сложно определимы. Необходимо учитывать возможности испытательного оборудования. Нечто подобное изложено в монографии [1]. Указанный метод заключается в следующем: определяют максимальную деформацию прибора по результатам натурных испытаний, либо по результатам специальных лабораторных испытаний. В результате определяют резонансную частоту f0 ,и как следствие, жесткость конструкции корпуса прибора (или его системы виброизоляции). Имея результаты натурных испытаний, рассчитывают параметры эквивалентной ударному воздействию гармонической (синусоидальной) вибрации. Т.е. импульс эквивалентного вибрационного воздействия, заменяющего удар, рассчитывается исходя из полученных экспериментально данных по прочности реального прибора. Именно получение экспериментальных данных по конструкции прибора является основным недостатком данного способа. Аналогом описанному выше является метод, разработанный в работе [2], суть которого заключается в определении амплитуды виброускорения гармонических колебаний по следующей формуле:

ε ¨ г = π f 0 S 0 2 Q , ( 1 )

где ε ¨ г - амплитуда виброускорения гармонической вибрации, эквивалентного удару,

f0 - резонансная частота конструкции,

Q - добротность,

S0 - спектральная плотность.

Определение необходимых данных в формуле (1) осуществляется также, как в работе [1], на основании натурных испытаний реальных конструкций. В результате определяются параметры гармонической вибрации ε ¨ г , f0, S0, Q, которые сравниваются с параметрами широкополосной случайной вибрации. С помощью способа [2] можно рассчитать параметры гармонической вибрации эквивалентной ударному воздействию. Далее проводится оценка эквивалентности двух механических воздействий.

Однако и этот способ предполагает получение исходных данных по прибору или по его массогабаритному имитатору, что непозволительно в случаях отсутствия лишнего прибора или имитатора. К тому же основным недостатком имитатора является часто несовпадения с прибором по массогабаритным характеристикам. Основным недостатком метода в работе [2] являются использование реальной конструкции. Поэтому использование традиционных методов (метод сравнения параметров входного воздействия и реакции на него прибора, энергетический метод, метод определения спектральной плотности в резонансном диапазоне частот и др.) пересчета параметров ударного импульса в параметры гармонической вибрации в данном случае невозможно. Основная сложность при реализации предлагаемого способа заключается в невозможности определения исходных данных при решении системы дифференциальных уравнений, описывающих колебательные движения модели изделия. Например, метод определения реальных жесткостей и демпфирования изделия в нашем случае неприменим по причине наличия изделия в единственном экземпляре. Неприменим и метод замены испытуемого изделия на его массогабаритные имитаторы.

Предлагаемый способ эквивалентной замены механических воздействий предполагает использование только параметров двух воздействий и массы реального прибора.

Поэтому в данном случае приходится обходиться анализом параметров колебаний, которые вызывают механические воздействия, свойственные при транспортировании (т.е. многократный удар) и гармонической вибрации. Эквивалентность двух механических воздействий будет проводиться с использованием массы испытуемого объекта, амплитуд ускорения, длительности ударного импульса и частотного диапазона двух механических воздействий. Наиболее удобным в этом случае является параметр импульса силы, который является функцией от массы изделия, амплитуды ускорения и частоты (следовательно, длительности периода синусоидальной вибрации или длительности импульса). Импульс силы I определяется по формуле во всем диапазоне частот:

I = M ε ¨ f , ( 2 )

где M - масса изделия,

ε ¨ - максимальное ускорение на изделии при механическом воздействии,

f - текущее значение частоты ударного импульса или вибрации.

Частота, на которой выполняется критерий Iгв≥Iу, является рабочей и на ней следует проводить испытание на транспортирование.

Необходимо определить продолжительность воздействия гармонической вибрации, соответствующей количеству ударов:

T u = N υ , ( 3 )

где Tu - продолжительность испытания на вибростенде,

N - общее количество ударов при испытаниях на транспортирование,

υ - частота повторения ударов при транспортировании.

По формуле (3) определяется общая продолжительность воздействия эквивалентной ударной гармонической вибрации в направлении трех осей координат испытуемого изделия. Испытание может быть проведено и в одном критичном направлении.

Пример пересчета импульса ударного воздействия в гармоническую (синусоидальную) вибрацию:

1. Исходя из (2), определение импульса силы проводится во всем диапазоне частот. Проведем анализ гармонической (синусоидальной) вибрации и определим импульс силы для различных частот, начиная с 20 Гц до 60 Гц. Частотный диапазон определяется следующим: до 20 Гц амплитуда задается виброперемещением, величина которого не соответствует амплитуде 2g (вибростенд может вытянуть амплитуду виброперемещения 0,8-1,0 мм, что не соответствует амплитуде 2g, например, на частоте 10 Гц). Расчет импульса силы для частот указанного диапазона синусоидальной вибрации проводим по формуле (1). Масса упакованного в тару прибора составляет 100 кг. Рассчитанные импульсы силы на основных частотах приведены в таблице 1.

Таблица 1 № п.п. Частота, Гц Амплитуда виброускорения, g Импульс силы, H·c 1 20 10,0 2 30 6,6 3 40 2,0 5,0 4 50 4,0 5 60 3,3

2. В соответствии с ГОСТ 16962.2-90 и ГОСТ 51371-99 изделие в упаковке должно подвергаться в условиях транспортирования следующим параметрам удара для массы от 75 до 200 кг:

- амплитуда ускорения 20 g, длительность 0,006 с, количество ударов 2000,

- амплитуда ускорения 15 g, длительность 0,006 с, количество ударов 20000,

- амплитуда ускорения 10 g, длительность 0,006 с, количество ударов 88000.

В общем случае изделие в упаковке должно выдержать 110000 ударов.

3. Расчет импульса силы для трех параметров транспортировочного воздействия приведен в таблице 2.

Таблица 2 №п.п. Длительность Амплитуда Частота, Импульс силы, ударного виброускорения, Гц H·c импульса, с g 1 0,006 20 166 12 2 0,006 15 166 9 3 0,006 10 166 6 4 Среднее значение - - 9

Сравнивая импульсы силы в таблицах 1 и 2, можно сделать вывод, что наибольший импульс силы возникает на частоте 20 Гц (I=10 H·c), что близко к среднему значению импульсу силы при ударном воздействии при транспортировании. Следовательно, выполняется условие Iгв≥Iу. Рабочая частота, на которой следует проводить испытания - 20 Гц. В случае, если расчеты, приведенные в таблице 1, не приводят (критерий Iгв≥Iу не выполняется), нужно увеличит амплитуду виброускорения и повторить расчет по таблице 1. Результаты аналитического выбора эквивалентного воздействия приведены на фиг.1. В результате сравнения всех четырех импульсов эквивалентным является импульс с амплитудой 5 g. Таким образом, испытания необходимо проводить на частоте 20 Гц с амплитудой виброускорения не ниже 5 g.

4. Определение продолжительности испытаний может быть выполнено с использованием общего количества ударов, которое должен произвести ударный стенд при испытаниях изделия. В соответствии с ГОСТ 16962.2-90 и ГОСТ 51371-99 частота повторения ударов может быть не более 100 ударов в мин (зачастую задается именно эта цифра, которая принята и для удобства расчета). Расчет проводится по формуле (3).

5. Поэтому общее время испытания при ударном воздействии, определенное по формуле (2), составит 1100 минут или 18,3 часа. Это же время необходимо для проведения испытаний на вибростенде. Изделие испытает (эквивалентное ударному воздействию) при вибрации на частоте 20 Гц (длительность периода 0,05 с, что 8,3 раза больше длительности импульса ударного воздействия) 1317600 циклов воздействия. Испытание можно проводить в направлении трех осей координат прибора или в направлении одной из критичных осей координат.

Таким образом, разработан метод проведения испытаний на гармоническую вибрацию, эквивалентно заменяющий испытания на транспортирование приборов РЭА.

Список литературы

1. Круглов Ю.А., Туманов Ю.А. Ударовиброзащита машин, оборудования и аппаратуры. - Л.: Машиностроение, 1986 г.

2. Кузьмин Э.Н., Захарова Н.Ф., Синякина Л.П. Способ вибрационных испытаний объектов. Патент Российской Федерации №1773164, 1996 г.

Похожие патенты RU2556287C2

название год авторы номер документа
СПОСОБ ИСПЫТАНИЙ ГРУЗОВ НА СЛУЧАЙ АВИАЦИОННОГО ТРАНСПОРТИРОВАНИЯ 2006
  • Орлов Виктор Сергеевич
  • Орлов Сергей Александрович
RU2337338C2
СПОСОБ ИСПЫТАНИЙ ОБЪЕКТОВ НА ВИБРОУДАРНЫЕ НАГРУЗКИ 2021
  • Байрак Виктор Владимирович
  • Шакиров Ринат Назифович
  • Шарков Максим Владимирович
RU2775377C1
СПОСОБ ИСПЫТАНИЙ ПРИБОРОВ И АППАРАТУРЫ НА ТРАНСПОРТИРОВАНИЕ 2008
  • Орлов Александр Сергеевич
  • Орлов Сергей Александрович
RU2389995C1
СПОСОБ ИСПЫТАНИЙ ОБОРУДОВАНИЯ НА МЕХАНИЧЕСКИЕ ВОЗДЕЙСТВИЯ 2009
  • Усанов Алексей Юрьевич
  • Орлов Сергей Александрович
  • Орлов Александр Сергеевич
RU2399032C1
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ВИБРОСТЕНД И ВИБРАТОР РЕЗОНАНСНОГО ТИПА 2007
  • Яровиков Валерий Иванович
  • Зайцев Леонид Яковлевич
  • Смирнов Владимир Дмитриевич
RU2334966C1
СПОСОБ ИСПЫТАНИЙ КОСМИЧЕСКИХ АППАРАТОВ 1998
  • Орлов С.А.
RU2171974C2
СПОСОБ ИСПЫТАНИЙ АМОРТИЗИРОВАННЫХ ИЗДЕЛИЙ НА СЕЙСМОСТОЙКОСТЬ 1991
  • Волков Ю.А.
  • Сафронов А.И.
RU2016386C1
СПОСОБ КОМПЛЕКСНЫХ ИСПЫТАНИЙ УНИФИЦИРОВАННЫХ СИСТЕМ ПОЗИЦИОНИРОВАНИЯ НА ОСНОВЕ МИКРОМЕХАНИЧЕСКИХ АКСЕЛЕРОМЕТРОВ И ГИРОСКОПОВ И АВТОМАТИЗИРОВАННЫЙ СТЕНД ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Солдатенков Виктор Акиндинович
  • Грузевич Юрий Кириллович
  • Ачильдиев Владимир Михайлович
  • Беликова Вера Николаевна
  • Бедро Николай Анатольевич
  • Шишкин Антон Сергеевич
RU2381511C1
Способ испытаний на высокоинтенсивные ударные воздействия приборов и оборудования 2022
  • Орлов Сергей Александрович
  • Орлов Александр Сергеевич
RU2794872C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ВИБРАЦИИ НАКОНЕЧНИКА УЛЬТРАЗВУКОВОГО ВОЛНОВОДА 2015
  • Еняков Александр Михайлович
RU2593444C1

Реферат патента 2015 года СПОСОБ ВИБРАЦИОННЫХ ИСПЫТАНИЙ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ

Изобретение относится к испытательной технике. Способ реализуют следующим образом. На испытуемое изделие воздействует гармоническая вибрация, воспроизводимая на вибростенде и являющаяся эквивалентной ударным воздействиям, возникающим при транспортировании изделия. Предварительно расчетом определяют параметры импульса силы гармонической вибрации Iгв, определение импульса силы проводят во всем диапазоне частот 5-60 Гц. Затем проводят сравнение полученных импульсов Iгв≥Iу, где Iу - импульс силы эквивалентного ударного воздействия, при близости импульсов силы, при этом частота вибрационного воздействия, на которой был получен близкий к среднему значению импульса силы ударного воздействия импульс силы гармонической вибрации Iгв, соответствующий условию Iгв≥Iу, принимается в качестве частоты, на которой проводят испытания на транспортирование. Технический результат заключается в возможности замены испытаний на транспортирование испытаниями на гармоническую вибрацию. 1 ил., 2 табл.

Формула изобретения RU 2 556 287 C2

Способ вибрационных испытаний РЭА, заключающийся в том, что ударное воздействие на испытуемое изделие заменяется эквивалентным испытанием на гармоническую вибрацию, отличающийся тем, что на испытуемое изделие воздействует гармоническая вибрация, воспроизводимая на вибростенде и являющаяся эквивалентной ударным воздействиям, возникающим при транспортировании изделия, предварительно расчетом определяют параметры импульса силы гармонической вибрации Iгв, определение импульса силы проводят во всем диапазоне частот 5-60 Гц, проводят сравнение полученных импульсов Iгв≥Iу, где Iу - импульс силы эквивалентного ударного воздействия, при близости импульсов силы, при этом частота вибрационного воздействия, на которой был получен близкий к среднему значению импульса силы ударного воздействия импульс силы гармонической вибрации Iгв, соответствующий условию Iгв≥Iу, принимается в качестве частоты, на которой проводят испытания на транспортирование.

Документы, цитированные в отчете о поиске Патент 2015 года RU2556287C2

СПОСОБ ВИБРАЦИОННЫХ ИСПЫТАНИЙ ОБЪЕКТОВ 1990
  • Кузьмин Э.Н.
  • Захарова Н.Ф.
  • Синякина Л.П.
RU1773164C
Круглов Ю.А., Туманов Ю.А
Ударовиброзащита машин, оборудования и аппаратуры
Л.: Машиностроение, 1986 г
СПОСОБ ИСПЫТАНИЯ КОНСТРУКЦИИ НА УДАРНЫЕ ВОЗДЕЙСТВИЯ 2007
  • Кумпяк Олег Григорьевич
  • Однокопылов Георгий Иванович
  • Дзюба Павел Викторович
RU2362136C1
СПОСОБ ИСПЫТАНИЙ ОБОРУДОВАНИЯ НА МЕХАНИЧЕСКИЕ ВОЗДЕЙСТВИЯ 2009
  • Усанов Алексей Юрьевич
  • Орлов Сергей Александрович
  • Орлов Александр Сергеевич
RU2399032C1

RU 2 556 287 C2

Авторы

Ахрамович Игорь Лазаревич

Сухов Владимир Васильевич

Даты

2015-07-10Публикация

2013-01-22Подача