Предлагаемое изобретение относится к измерительной технике и может быть использовано для измерения давления в системах измерения, контроля и управления.
Известны полупроводниковые датчики давления с тензорезисторами, сформированными в полупроводниковом чувствительном элементе. Тензорезисторы объединены в мостовую измерительную цепь [1, 2].
Известна конструкция чувствительного элемента датчика давления мембранного типа [3], представляющая собой монокристаллический кремниевый кристалл n-типа проводимости, планарная сторона которого ориентирована по кристаллографической плоскости (100) с углублением на тыльной стороне кристалла, образующим квадратную в плане мембрану. На планарной стороне мембраны сформированы четыре однополосковых тензорезистора p-типа проводимости таким образом, что их продольные оси параллельны одной из главных осей мембраны, совпадающей с кристаллографическим направлением [110].
Наиболее близким по технической сущности к предлагаемому решению является конструкция полупроводникового датчика абсолютного давления, выбранного в качестве прототипа [4]. Такой датчик содержит корпус со штуцером, металлическую мембрану, передающую воздействие давления через несжимаемую жидкость полупроводниковому чувствительному элементу. Полупроводниковый чувствительный элемент выполнен в виде профилированного монокристалла кремния плоскости (100) с квадратной мембраной, соединенного электростатическим способом в вакууме со стеклянным основанием. На плоской поверхности профилированного кристалла сформированы тензорезисторы, объединенные в мостовую измерительную цепь. Внутри чувствительного элемента между кристаллом и стеклянным основанием находится вакуумированная полость, обеспечивающая измерение абсолютных давлений.
Общим недостатком конструкций чувствительных элементов датчиков давления, описанных в [1-4], является недостаточно высокая чувствительность, обусловленная тем, что расположенные на границе мембраны тензорезисторы испытывают деформации, которые не являются максимально возможными для профилированных кристаллов с квадратной мембраной. Как было установлено, максимальные относительные деформации находятся на относительном расстоянии
Задачей предлагаемого изобретения является повышение чувствительности за счет оптимального расположения тензорезисторов в зонах максимальных относительных деформаций. Кроме того, задачей предлагаемого изобретения является повышение точности за счет повышения чувствительности.
Техническим результатом изобретения является увеличение чувствительности за счет расположения тензорезисторов в зонах максимальных относительных деформаций. При этом с повышением чувствительности повышается и точность. Кроме того, техническим результатом является повышение технологичности изготовления датчика, поскольку представляется возможным заранее определять оптимальное расположение тензорезисторов, обеспечивающее максимальную чувствительность проектируемых датчиков, при различных отношениях размера мембраны к ее толщине aм/hм.
Это достигается тем, что в датчике абсолютного давления повышенной чувствительности, содержащем корпус со штуцером, металлическую мембрану, передающую воздействие давления через несжимаемую жидкость полупроводниковому чувствительному элементу, выполненному в виде профилированного монокристалла кремния плоскости (100) с квадратной мембраной, соединенного электростатическим способом в вакууме со стеклянным основанием, на плоской поверхности профилированного монокристалла сформированы тензорезисторы, объединенные в мостовую измерительную цепь, в соответствии с предлагаемым решением центры тензорезисторов расположены на расстоянии l от взаимно перпендикулярных осей Ox и Oy, проведенных через центр мембраны, лежащих в ее плоскости и параллельных границам тонкой части мембраны с основанием полупроводникового чувствительного элемента, которое определено из соотношения:
где ам - размер мембраны полупроводникового кристалла; hм - толщина мембраны полупроводникового кристалла.
На фиг. 1 показана конструкция предлагаемого датчика абсолютного давления повышенной чувствительности на основе полупроводникового чувствительного элемента. Датчик содержит корпус 1 со штуцером 2, герметизирующую контактную колодку 3, металлическую мембрану 4, несжимаемую жидкость 5, полупроводниковый чувствительный элемент 6. Несжимаемая жидкость заливается через трубку 7, расположенную в контактной колодке 3.
На фиг. 2 отдельно показан полупроводниковый чувствительный элемент датчика. Он состоит из профилированного монокристалла кремния 8 плоскости (100) толщиной Нкр с квадратной мембраной размером ам и толщиной hм, соединенного электростатическим способом в вакууме со стеклянным основанием 9 (фиг. 2, б). На плоской поверхности профилированного кристалла 8 сформированы тензорезисторы R10-R13, объединенные в мостовую измерительную цепь. Тензорезисторы, нормальные к оси Ox, занимают такую же площадь, что тензорезисторы, нормальные к оси Oy, а длина тензоэлементов тензорезисторов, нормальных к оси Oy, равна ширине тензорезисторов, нормальных к оси Ox.
Центры тензорезисторов R10-R13 находятся на расстоянии l от центра мембраны, определенном из соотношения (1). Это соотношение было получено исходя из условия:
где ам - размер мембраны полупроводникового кристалла (
Соотношение для относительного расстояния
К примеру, для ам=2,4 мм, толщина мембраны обычно лежит в пределах hм=20…480 мкм.
При фиксированных значениях размера стороны мембраны ам изменялась толщина мембраны hм с учетом (3). Так, в случае ам=2,4 мм толщина мембраны изменялась в диапазоне значений 20…480 мкм (обычно используемых на практике).
В процессе моделирования определялись значения расстояния, соответствующего местоположению максимальных относительных деформаций. Полученные данные аппроксимировались в диапазоне значений, удовлетворяющих условию (3) полиномом. В результате была определена зависимость
Установленная зависимость относительного расстояния, соответствующего местоположению максимальных относительных деформаций,
На фиг. 3 представлена зависимость относительного расстояния
Рассмотрим пример.
Возьмем размер мембраны полупроводникового кристалла ам=3 мм, толщину мембраны полупроводникового кристалла hм=40 мкм.
В соответствии с выражением (1), определим расстояние l, соответствующее расположению центров тензорезисторов в областях максимальной относительной деформации:
При этом относительное расстояние
При размере мембраны ам=3 мм и толщине мембраны hм=300 мкм расстояние l, соответствующее расположению центров тензорезисторов в областях максимальной относительной деформации:
При этом относительное расстояние
Датчик абсолютного давления повышенной чувствительности на основе полупроводникового чувствительного элемента работает следующим образом. Измеряемое давление воздействует на металлическую мембрану 4, передающую воздействие давления через несжимаемую жидкость 5 полупроводниковому чувствительному элементу 6 (фиг. 1), состоящему из профилированного полупроводникового кристалла 8, соединенного электростатическим способом со стеклянным основанием 9 в вакууме (фиг. 2а, б). В результате воздействия давления на плоской поверхности полупроводникового кристалла 8 возникают деформации, которые воспринимаются тензорезисторами 10-13, включенными в мостовую измерительную цепь. Изменение сопротивлений тензорезисторов преобразуется мостовой измерительной цепью в выходное напряжение. В связи с размещением центров тензорезисторов 10-13 на расстоянии l от центра кристалла, определенном из соотношения (1), они оказываются расположенными в зоне максимальных относительных деформаций. Благодаря такому размещению тензорезисторов повышена чувствительность датчика, за счет этого также повышена точность датчика по сравнению с прототипом.
Предлагаемый датчик абсолютного давления повышенной чувствительности на основе полупроводникового чувствительного элемента обладает повышенной технологичностью, поскольку представляется возможным заранее определять оптимальное расположение тензорезисторов при различных отношениях размера стороны мембраны к ее толщине aм/hм.
Таким образом, благодаря отличительным признакам изобретения повышается чувствительность датчика за счет расположения тензорезисторов в зонах максимальных относительных деформаций. Кроме того, повышается технологичность за счет возможности размещения тензорезисторов оптимальным образом при различных толщинах мембраны (в диапазоне от 20 до 480 мкм).
Источники информации, принятые во внимание при экспертизе
1. Ваганов В.И. Интегральные тензопреобразователи. - М.: Энергоатомиздат, 1983. - 136 с.
2. Распопов В.Я. Микромеханические приборы / Тульский Государственный университет - Тула, 2002. - 392 с.
3. Беликов Л.В., Разумихин В.М. Чувствительный элемент мембранного типа // Пат. 93027803 Российская Федерация, МПК G01L 9/04. Заявка 93027803/10 от 18.05.1993; опубл. 27.12.1995.
4. Баринов И.Н. Полупроводниковые тензорезистивные датчики давления на основе КНД-структуры. Компоненты и технологии №5. 2009. - С. 12-15.
5. Алямовский A.A. COSMOSWorks. Основы расчета конструкций на прочность в среде SolidWorks / А.А. Алямовский. - М.: ДМК Пресс, 2011. - 784 с.
6. Алямовский А.А. Инженерные расчеты в SolidWorks Simulation / А.А. Алямовский. - М.: ДМК Пресс, 2011. - 464 с.
название | год | авторы | номер документа |
---|---|---|---|
ДАТЧИК АБСОЛЮТНОГО ДАВЛЕНИЯ ПОВЫШЕННОЙ ТОЧНОСТИ НА ОСНОВЕ ПОЛУПРОВОДНИКОВОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА С ЖЕСТКИМ ЦЕНТРОМ | 2012 |
|
RU2507490C1 |
ПОЛУПРОВОДНИКОВЫЙ ДАТЧИК АБСОЛЮТНОГО ДАВЛЕНИЯ ПОВЫШЕННОЙ ТОЧНОСТИ | 2011 |
|
RU2451270C1 |
ПОЛУПРОВОДНИКОВЫЙ ДАТЧИК ДАВЛЕНИЯ С ЧАСТОТНЫМ ВЫХОДНЫМ СИГНАЛОМ | 2010 |
|
RU2430342C1 |
ПОЛУПРОВОДНИКОВЫЙ ДАТЧИК ДАВЛЕНИЯ | 1993 |
|
RU2047113C1 |
ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ ПОВЫШЕННОЙ ТОЧНОСТИ И НАДЕЖНОСТИ | 2012 |
|
RU2480723C1 |
МИКРОМЕХАНИЧЕСКИЙ ВОЛОКОННО-ОПТИЧЕСКИЙ ДАТЧИК ДАВЛЕНИЯ | 2014 |
|
RU2571448C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ ДАТЧИКА МЕХАНИЧЕСКИХ ВЕЛИЧИН | 2013 |
|
RU2544864C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ ДАТЧИКА ДАВЛЕНИЯ И ДАТЧИК ДАВЛЕНИЯ НА ЕГО ОСНОВЕ | 2009 |
|
RU2398195C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ ВЫСОКОТЕМПЕРАТУРНОГО ДАТЧИКА МЕХАНИЧЕСКИХ ВЕЛИЧИН | 2014 |
|
RU2547291C1 |
ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ПРЕОБРАЗОВАТЕЛЯ ДАВЛЕНИЯ И ТЕМПЕРАТУРЫ | 2015 |
|
RU2606550C1 |
Изобретение относится к измерительной технике и может быть использовано для измерения давления в системах измерения, контроля и управления. Датчик абсолютного давления содержит корпус со штуцером, металлическую мембрану, передающую воздействие давления через несжимаемую жидкость полупроводниковому чувствительному элементу, выполненному в виде профилированного монокристалла кремния плоскости (100) с квадратной мембраной, соединенного электростатическим способом в вакууме со стеклянным основанием, на плоской поверхности профилированного монокристалла сформированы тензорезисторы, объединенные в мостовую измерительную цепь. Центры тензорезисторов расположены на расстоянии l от взаимно перпендикулярных осей Ox и Oy, проведенных через центр мембраны, лежащих в ее плоскости и параллельных границам тонкой части мембраны с основанием полупроводникового чувствительного элемента, которое определено из соотношения:
где ам - размер мембраны полупроводникового кристалла; hм - толщина мембраны полупроводникового кристалла. Технический результат - повышение чувствительности устройства. 3 ил.
Датчик абсолютного давления повышенной чувствительности, содержащий корпус со штуцером, металлическую мембрану, передающую воздействие давления через несжимаемую жидкость полупроводниковому чувствительному элементу, выполненному в виде профилированного монокристалла кремния плоскости (100) с квадратной мембраной, соединенного электростатическим способом в вакууме со стеклянным основанием, на плоской поверхности профилированного монокристалла сформированы тензорезисторы, объединенные в мостовую измерительную цепь, отличающийся тем, что центры тензорезисторов расположены на расстоянии l от взаимно перпендикулярных осей Ox и Oy, проведенных через центр мембраны, лежащих в ее плоскости и параллельных границам тонкой части мембраны с основанием полупроводникового чувствительного элемента, которое определено из соотношения:
где ам - размер мембраны полупроводникового кристалла; hм - толщина мембраны полупроводникового кристалла.
ДАТЧИК АБСОЛЮТНОГО ДАВЛЕНИЯ ПОВЫШЕННОЙ ТОЧНОСТИ НА ОСНОВЕ ПОЛУПРОВОДНИКОВОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА С ЖЕСТКИМ ЦЕНТРОМ | 2012 |
|
RU2507490C1 |
ПОЛУПРОВОДНИКОВЫЙ ДАТЧИК АБСОЛЮТНОГО ДАВЛЕНИЯ ПОВЫШЕННОЙ ТОЧНОСТИ | 2011 |
|
RU2451270C1 |
ПОЛУПРОВОДНИКОВЫЙ ДАТЧИК ДАВЛЕНИЯ С ЧАСТОТНЫМ ВЫХОДНЫМ СИГНАЛОМ | 2010 |
|
RU2430342C1 |
DE 102007053859 A1, 14.05.2009 |
Авторы
Даты
2015-08-10—Публикация
2014-06-17—Подача