Изобретение относится к цветной металлурги, в частности к производству алюминия, и направлено на повышение энергетической эффективности и сокращение потребления электроэнергии электролизером с самообжигающимся анодом.
Известно устройство для подогрева и дозированной подачи глинозема в алюминиевый электролизер, содержащее накопительный бункер в виде емкости, надетой на горелку для дожигания газов [заявка на изобретение №2000102952 от 07.02.2000, опубл. 20.11.2001].
Недостатки устройства: охлаждение горелки надетой на нее емкостью и связанное с этим снижение эффективности дожига анодных газов, сложность подачи нагретого глинозема из емкости в точки максимальной циркуляции электролита, что ухудшает растворимость глинозема в расплаве и создает риск образования осадков на подине электролизера.
Известен способ термического обезвреживания анодных газов алюминиевого электролизера, включающий направление анодных газов от газосборников нескольких электролизеров по теплоизолированным спускам в теплоизолированный газоход и их централизованный дожиг в горелке или топке с последующим направлением дымовых газов, перед их подачей в газоход, в теплообменник для утилизации тепла [патент РФ №2321687 RU от 01.03.2006, опубл. 10.04.2008].
Недостатки способа. При электролитическом производстве алюминия термическое обезвреживание анодных газов осуществляют за счет их самовоспламенения при смешивании с воздухом, подсасываемым в горелку. При этом температура газовоздушной смеси, достаточная для ее самовоспламенения, должна быть не ниже 530°С. Температура анодных газов на выходе из газосборника электролизера составляет 490-620°С, и при транспортировке в горелку или топку централизованного дожига по теплоизолированным газоходам протяженностью до 90 метров возникает риск их охлаждения до температуры, недостаточной для самовоспламенения смеси, в связи с чем возникает потребность в дополнительном устройстве розжига горелки - газовом или жидкотопливном. Утилизированное в теплообменнике тепло дымовых газов в условиях алюминиевых заводов имеет ограниченное применение. Наиболее приемлемым является использование этого тепла на нагрев воздуха, подсасываемого в зону горения, что усложняет конструкцию горелки или топки централизованного дожига.
Известен способ и устройство для предварительного нагрева сырья с помощью охладителя отходящих газов. Устройство содержит теплообменник предварительного нагрева сырья, первая сторона которого сообщается с линией транспортирования отходящих газов, а вторая сообщается с линией подачи сырья [патент РФ №2491321 RU от 18.02.2010, опубл. 27.08.2013].
Недостаток устройства - малая площадь теплопередачи между теплоносителем и нагреваемым материалом, не обеспечивающая эффективной утилизации тепла отходящих газов.
Задачей заявляемого способа и устройства является использование тепла дымовых газов электролизера с самообжигающимся анодом на нагрев глинозема и сокращение, таким образом, расхода электроэнергии на производство алюминия и энергозатрат на транспортировку анодных газов, уменьшение материалоемкости газоходной сети корпуса электролиза.
Достигается это тем, что способ утилизации тепла анодных газов алюминиевого электролизера включает сжигание анодных газов в горелочном устройстве электролизера и направление дымовых газов в теплообменник, куда противотоком в межтрубное пространство поступает глинозем, где его выдерживают, используя тепло дымовых газов, в течение 10-12 часов для нагрева до температуры 200-250°C, после чего цикл повторяют.
Устройство утилизации тепла анодных газов алюминиевого электролизера содержит теплообменник, который установлен между двумя смежными электролизерами, выполнен наклонным по отношению к ним и состоит из 40-50 труб наружным диаметром 50 мм, через которые дымовые газы непосредственно отдают тепло глинозему, при этом наружный диаметр теплообменника составляет 800±50 мм, площадь теплообмена 15-20 м2, кроме того, теплообменник снабжен отводящими наклонными трубопроводами для подачи глинозема в электролизер.
Целесообразность установки теплообменника между двумя смежными электролизерами и подачи из него нагретого глинозема в смежные электролизеры обосновывается тем, что в этом случае происходит сокращение количества эксплуатируемых бункеров системы автоматического питания электролизера (системы АПГ), уменьшение нагрузки на домкраты анодной рамы и улучшение условий формирования самообжигающегося анода. В настоящее время питание электролизера глиноземом осуществляется четырьмя бункерами, размещенными на анодном кожухе, по два с каждой продольной стороны электролизера. Установка теплообменника, использующего в качестве бункера системы АПГ, между двумя смежными электролизерами позволит уменьшить их количество практически в 2 раза - в масштабе корпуса электролиза, эксплуатирующего 88 электролизеров, с 352 до 192 единиц. При этом нагрузка на домкраты анодной рамы снизится на 6-8 тонн, а удельное потребление электроэнергии приводами домкратов анодной рамы - на 2,0-2,5 кВт·ч/тАl. Также удаление бункеров системы АПГ увеличит отвод тепла от анодного кожуха, что улучшит условия формирования самообжигающегося анода, исключит образование в нем «шеек» и протеки жидкого пека в подколокольное пространство, что улучшит экологические показатели производства алюминия.
Подача глинозема в межтрубное пространство теплообменника обосновывается необходимостью его загрузки в объеме, достаточном для питания смежных электролизеров в течение 10-12 часов, - времени, достаточного для нагрева глинозема до целевых температур 200-250°C. Наружный диаметр теплообменника 800±50 мм обеспечивает около 1 м3 свободного объем межтрубного пространства, что достаточно для загрузки 1,5-1,7 т глинозема, необходимых для питания смежных электролизеров в течение 10-12 часов.
Направление дымовых газов в трубы теплообменника обеспечивает эффективную отдачу от них тепла нагреваемому глинозему.
Время выдержки глинозема в теплообменнике в течение 10-12 часов обусловлено тем, что в этот период от электролизера с дымовыми газами в систему газоотсоса уносится 750-900 кДж тепла, достаточного для нагрева до температуры 200-250°C 1,2-1,5 тонн глинозема, требующихся для питания смежных электролизеров в течение 10-12 часов.
Площадь теплообмена 15-20 м2 определяется тепловым потоком, создаваемым теплом дымовых газов.
Количество, диаметр и длина труб выбраны из соображений обеспечения необходимой площади теплообмена, равной 15-20 м2.
Наклон теплообменника и отводящих труб равным 35-40° обеспечивает оптимальную подачу глинозема. Уменьшение угла наклона теплообменника и труб по отношению к горизонту менее 45° создает риск их закупоривания глиноземом. Превышение угла наклона труб более 50° потребует установки теплообменника на высоте, затрудняющей его загрузку глиноземом специальной обрабатывающей техникой.
Способ и устройство для утилизации тепла анодных газов иллюстрируются графически. Анодные газы от электролизера 1 собираются газосборным колоколом 2 и направляются на дожиг в горелочное устройство 3. Из горелочного устройства горячие дымовые газы, температура которых составляет 500-600°C, по газоотводящему патрубку 4 направляются в трубы 5 теплообменника 6, где они охлаждаются до 80-100°C. В межтрубном пространстве теплообменника, противотоком по отношению к движению газов, движется глинозем, нагреваясь до температуры 200-250°C, используя тепло дымовых газов, где его выдерживают в течение 10-12 часов. Порции нагретого таким образом глинозема, по 1,5-2,0 кг каждая, по наклонным трубам 7 самотеком поступают в электролизер, где его погружение в расплав осуществляется с помощью пробойника 8 системы АПГ.
Преимущества заявляемого способа и устройства для его осуществления: нагрев глинозема до 200-250°C уменьшает удельный расход электроэнергии на 80-95 кВт·ч/тАl, охлаждение анодных газов с 500-600°C до 80-100°C снижает объем эвакуируемых газов в 2-2,5 раза, удельные энергозатраты на их транспортировку - на 15-20 кВт·ч/тАl, снижение материалоемкости газоходной сети корпуса электролиза на 12-15 т, сокращение количества бункеров почти в 2 раза, снижение нагрузки на домкраты анодной рамы на 6-8 т и потребление электроэнергии их приводами на 2,0-2,5 кВт·ч/тАl, обеспечение более благоприятных условий формирования самообжигающегося анода, сокращение протеков пека в подколокольное пространство и улучшение экологических показателей производства алюминия в электролизерах с самообжигающимся анодом, снижение интенсивности эксплуатации дизельных машин загрузки глинозема в бункеры систем АПГ. В общей сложности реализация заявляемого способа обеспечивает сокращение удельного расхода электроэнергии на производство каждой тонны алюминия на 100-120 кВт·ч.
название | год | авторы | номер документа |
---|---|---|---|
Способ непрерывного питания алюминиевого электролизёра глинозёмом и устройство для его осуществления | 2023 |
|
RU2800763C1 |
СПОСОБ ДОЖИГА АНОДНЫХ ГАЗОВ АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА | 1995 |
|
RU2093610C1 |
Устройство для дожигания анодных газов алюминиевого электролизера | 2016 |
|
RU2631778C1 |
СПОСОБ ОЧИСТКИ ГОРЕЛОЧНОГО УСТРОЙСТВА И ГАЗОХОДНОЙ СЕТИ АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА | 2010 |
|
RU2437966C1 |
СПОСОБ ПРОДУВКИ ГАЗОХОДОВ АЛЮМИНИЕВЫХ ЭЛЕКТРОЛИЗЕРОВ, ОБОРУДОВАННЫХ СИСТЕМОЙ АВТОМАТИЗИРОВАННОЙ ПОДАЧИ ГЛИНОЗЕМА | 2000 |
|
RU2175031C1 |
СПОСОБ ПИТАНИЯ СЫРЬЕМ АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 1998 |
|
RU2154127C1 |
СПОСОБ УЛАВЛИВАНИЯ АНОДНЫХ ГАЗОВ ИЗ АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА | 2010 |
|
RU2448201C1 |
ЭЛЕКТРОЛИЗЕР ДЛЯ ПОЛУЧЕНИЯ АЛЮМИНИЯ | 1997 |
|
RU2113551C1 |
СИСТЕМА АВТОМАТИЧЕСКОЙ ПОДАЧИ СЫРЬЯ В ЭЛЕКТРОЛИЗЕРЫ С САМООБЖИГАЮЩИМИСЯ АНОДАМИ | 2012 |
|
RU2506350C1 |
СИСТЕМА АВТОМАТИЧЕСКОЙ ПОДАЧИ СЫРЬЯ В ЭЛЕКТРОЛИЗЕРЫ С САМООБЖИГАЮЩИМИСЯ АНОДАМИ | 2014 |
|
RU2561940C1 |
Изобретение относится к способу и устройству для утилизации тепла анодных газов алюминиевого электролизера. Способ утилизации тепла анодных газов алюминиевого электролизера включает сжигание анодных газов в горелочном устройстве электролизера и направление дымовых газов в теплообменник, направление глинозема противотоком в межтрубное пространство, выдержку его в течение 10-12 часов для нагрева теплом дымовых газов до температуры 200-250°C с последующим повторением цикла. Устройство содержит теплообменник, установленный между двумя смежными электролизерами, выполненный наклонным по отношению к ним, содержащий 40-50 труб с наружным диаметром 50 мм для непосредственной передачи тепла дымовых газов глинозему, имеющий наружный диаметр, составляющий 800±50 мм, и площадь теплообмена, составляющую 15-20 м2, и снабженный отводящими наклонными трубопроводами для подачи глинозема в электролизер. Обеспечивается сокращение расхода электроэнергии на производство алюминия и транспортировку анодных газов и уменьшение материалоемкости газоходной сети корпуса электролиза. 2 н.п. ф-лы, 1 ил.
1. Способ утилизации тепла анодных газов алюминиевых электролизеров, включающий сжигание анодных газов в горелочном устройстве электролизера, направление дымовых газов в теплообменник и подогрев дымовыми газами подаваемого в электролизеры глинозема, отличающийся тем, что дымовые газы направляют в трубы теплообменника, а глинозем направляют противотоком в межтрубное пространство теплообменника и выдерживают в нем в течение 10-12 ч для нагрева его теплом дымовых газов до температуры 200-250°C.
2. Устройство для утилизации тепла анодных газов алюминиевых электролизеров, содержащее теплообменник, выполненный с возможностью подогрева дымовыми газами подаваемого в электролизеры глинозема, отличающееся тем, что теплообменник установлен между двумя смежными электролизерами, с наклоном под углом 35-40° по отношению к ним, содержит 40-50 труб для непосредственной отдачи тепла дымовых газов глинозему с наружным диаметром каждая 50 мм, а теплообменник имеет наружный диаметр, составляющий 800±50 мм, площадь теплообмена 15-20 м2 и снабжен отводящими наклонными трубопроводами для подачи глинозема в электролизеры.
CN 20224638 U, 02.11.2011 | |||
УСТРОЙСТВО ДЛЯ ПОДОГРЕВА И ДОЗИРОВАННОЙ ПОДАЧИ ГЛИНОЗЕМА В АЛЮМИНИЕВЫЙ ЭЛЕКТРОЛИЗЕР | 2000 |
|
RU2210635C2 |
СПОСОБ ПИТАНИЯ СЫРЬЕМ АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 1998 |
|
RU2154127C1 |
СПОСОБ И УСТРОЙСТВО ДЛЯ ПРЕДВАРИТЕЛЬНОГО НАГРЕВА СЫРЬЯ С ПОМОЩЬЮ ОХЛАДИТЕЛЯ ОТХОДЯЩИХ ГАЗОВ | 2010 |
|
RU2491321C2 |
CN 102154663 U, 17.08.2011 | |||
CN 102134727 U, 27.07.2011 |
Авторы
Даты
2015-08-10—Публикация
2014-03-28—Подача