РУТЕНИЕВЫЙ КАТАЛИЗАТОР МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА В ФОРМЕ КАТИОННОГО КОМПЛЕКСА И СПОСОБ ЕГО ПОЛУЧЕНИЯ Российский патент 2015 года по МПК B01J23/46 B01J31/18 B01J37/00 C08F4/80 C07F15/00 C08F32/00 

Описание патента на изобретение RU2560151C1

Изобретение относится к области гомогенного катализа, в частности к способу получения катализаторов метатезисной полимеризации дициклопентадиена (ДЦПД), а также к его применению - возможности управления метатезисной полимеризацией ДЦПД.

Каталитическая реакция метатезиса олефинов в последние годы зарекомендовала себя как универсальный метод образования С-С-связей и нашла большое применение в органическом синтезе и полимерной химии. R.Н. Grubbs, Handbook of Metathesis, v.2 and 3; Wiley VCH, Weiheim, 2003.

Семейство метатезисных реакций олефинов включает в себя метатезис с замыканием цепи (циклизация) (RCM), метатезисную полимеризацию с раскрытием цикла (ROMP), кросс-метатезис (СМ), метатезис ациклических α,ω-диенов (ADMET). R.Н. Grubbs, Handbook of Metathesis, v.1; Wiley VCH, Weiheim, 2003.

Известен ряд катализаторов метатезисной полимеризации с контролируемой каталитической активностью, опубликованных Граббсом и запатентованных Калифорнийским Технологическим институтом. HEJL A., DAY M.W., GRUBBS R.H. Latent Olefin Metathesis Catalysts Featuring Chelating Alkylidenes II. Organomet. 2006, 25, p.6149-6154, UNG Т., HEJL A., GRUBBS R.H., SCHRODI Y. Latent Ruthenium Olefin Metathesis Catalysts That Contain an N-Heterocyclic Carbene Ligand. Organomet., 2004, 23, p.5399-5401.

Катализаторы используют для получения полимеров из циклоолефинов и бициклоолефинов по реакции метатезисной полимеризации с раскрытием цикла при мольном соотношении мономер:катализатор в интервале от 30000:1 до 40000:1.

Высокая активность этих катализаторов затрудняет их применение в полимеризации ДЦПД, т.к. частицы катализатора покрываются слоем образовавшегося полимера с формированием микрокапсул, что препятствует растворению катализатора в мономере. Это приводит к большому расходу катализаторов и, как следствие, высокой себестоимости получения полидициклопентадиена.

Предварительное растворение катализатора в инертном растворителе снижает показатели качества полимера - полидициклопентадиена (ПДЦПД).

Известен способ получения катализатора метатезисной полимеризации дициклопентадиена, заключающийся в том, что катализатор Граббса второго поколения или его производные обрабатываются соответствующим стиролом в хлористом метилене при 40°С. Процесс метатезисной полимеризации дициклопентадиена начинается через 4 мин при 30°С и мольном соотношении мономер:катализатор от 30000:1 до 40000:1. US 2005261451 А, 24.11.2005.

Недостатком данного способа является низкий выход целевого продукта, который составляет от 50 до 65%. Это обусловлено многостадийностью синтеза и несовершенством методики.

В настоящее время широкое распространение получили катализаторы на основе карбеновых комплексов рутения для полимеризации цикло- и бициклоолефинов с раскрытием кольца с помощью метатезиса. Известны способы получения полидициклопентадиена под действием рутениевых катализаторов - карбеновых комплексов с фосфиновыми лигандами (катализаторы Граббса первого поколения), которые отличаются хорошей устойчивостью и эффективностью, в 5 раз превосходящей комплексы вольфрама, что позволяет использовать мольное соотношение мономер:катализатор до 15000:1. WO 9960030 А, 25.11.1999 и WO 9720865 А, 12.06.1997.

Основным недостатком рутениевых катализаторов первого поколения является низкая каталитическая активность, что обуславливает необходимость использования большого количества катализатора от 1:8000 до 1:15000.

Активность рутениевых катализаторов второго поколения в 5 и более раз превосходит таковую для катализаторов первого поколения, однако плохая растворимость и высокая скорость полимеризации дициклопентадиена затрудняет их использование. Катализатор, не успевая раствориться в мономере, покрывается слоем полимера - капсулируется и теряет активность. Это приводит к необходимости существенного увеличения расхода катализатора. Кроме того, при изготовлении изделий из полидициклопентадиена (ПДЦПД) методом литьевого формования возникают технологические проблемы, поскольку отсутствует возможность управления временем начала полимеризации и образующийся слишком рано полимер может забивать узлы подачи смеси мономера и катализатора.

Известен катализатор полимеризации дициклопентадиена общей формулы

где L - заместитель, выбран из группы, включающей

Способ его получения предусматривает взаимодействие трифенилфосфинового комплекса рутения с 1,1-дифенил-2-пропин-1-олом в тетрагидрофуране при температуре кипения растворителя в инертной атмосфере, а затем с трициклогексилфосфином при комнатной температуре в инертной атмосфере, выделяют образовавшийся инденилиденовый комплекс рутения, который последовательно в одном реакторе подвергают взаимодействию с 1,3-бис-(2,4,6-триметилфенил)-2-трихлорометилимидазолидином и 2-(N,N-диалкиламинометил)стиролом, или 1-(2-винилбензил)пирролидином, или 4-(2-винилбензил)морфолином в толуоле при нагревании 60-70°С в инертной атмосфере. Причем диалкил- представляет собой диэтил-, или метилэтил-, или метил(2-метоксиэтил)-. RU 2393171 С1, 27.08.2010.

Наиболее близким по технической сущности к предложенному является катализатор полимеризации дициклопентадиена (ДЦПД), имеющий общую формулу

где L - заместитель, выбран из группы аминостиролов. Получают катализатор взаимодействием трифенилфосфинового комплекса рутения с 1,1-дифенил-2-пропин-1-олом в тетрагидрофуране или диоксане при температуре кипения растворителя в инертной атмосфере, а затем с трициклогексилфосфином при комнатной температуре в инертной атмосфере выделяют образовавшийся инденилиденовый комплекс рутения. Последовательное взаимодействие с 1,3-бис-(2,4,6-триметилфенил)-2-трихлорметилимидазолидином и соответствующим 2-винилбензиламином приводит к образованию целевого продукта. RU 2462308 С1, 27.09.2012.

Основными недостатками известных катализаторов для получения полидициклопентадиена и материалов на его основе является затрудненность управления временем начала полимеризации и невозможность вовлекать в реакцию модифицирующие добавки, что приводит к нарушениям технологического цикла и неоднородности получаемого продукта.

Техническая задача, решаемая заявленной группой изобретений, заключается в создании нового эффективного рутениевого катализатора метатезисной полимеризации дициклопентадиена в форме катионного комплекса, позволяющего управлять временем начала полимеризации, снижении его расхода за счет повышения растворимости в мономере и способа его получения, обеспечивающего высокий выход и чистоту катализатора с высокой каталитической активностью.

Технический результат от реализации заявленной группы изобретений заключается в обеспечении возможности задавать время начала и скорость полимеризации с высокой точностью, что не всегда достижимо в способе-прототипе. При этом достигается высокая чистота и каталитическая активность катализатора и минимизация побочных примесей в процессе синтеза. Изменение концентрации катализатора и температуры полимеризации позволяет расширять технологические возможности при полимеризации дициклопентадиена и получать изделия из полидициклопентадиена с высокими потребительскими свойствами.

Техническая задача решается тем, что рутениевый катализатор полимеризации дициклопентадиена представляет собой [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]хлоро(2-((2-(диметиламиноэтилметиламино)метил))бензилиден)рутений хлорид в форме катионного комплекса формулы

(катализатор N1b). В структуре катализатора используют принципиально новый заместитель с формулой

обеспечивающий новые свойства катализатора, позволяющие осуществлять управляемую полимеризацию дициклопентадиена в зависимости от задаваемой температуры полимеризации дициклопентадиена в более широком временном и температурном интервале - от 50°С до 200°С со временем цикла от 10 мин до 4 ч в зависимости от концентрации катализатора и температуры полимеризации. Катализатор имеет высокую каталитическую активность, химически активен по отношению к широкому спектру добавок и расширяет технологические возможности при изготовлении изделий из полидициклопентадиена. Катализатор позволяет управлять скоростью и временем начала полимеризации, осуществлять плавную или ступенчатую полимеризацию, регулировать реологические и другие физико-механические характеристики полимерной матрицы. Управляющим фактором выступает температура нагрева или охлаждения полимерной матрицы в процессе полимеризации.

В соответствии с поставленной задачей разработан способ получения заявленного катализатора.

Способ получения катализатора осуществляют в три стадии.

Первая стадия - синтез инденилиденового комплекса (In) по следующей схеме:

Вторая стадия включает обработку инденилиденового комплекса рутения N-гетероциклическим карбеновым лигандом: 1,3-бис-(2,4,6-триметилфенил)-2-трихлорметилимидазолидином, H2IMesHCCl3, и 2-винилбензиламином формулы

с образованием соединения N1a по следующей схеме:

Третья стадия включает получение катализатора N1b в соответствии со следующей схемой:

Выход катализатора составляет до 70%.

Полимеризацию дициклопентадиена осуществляют с использованием заявленного катализатора при мольном соотношении субстрат:катализатор от 30000:1 до 200000:1 в интервале температур от 50°С до 200°С. Время цикла составляет от 10 мин до 4 ч. Время цикла полимеризации и скорость регулируют задаваемыми температурами в указанном интервале.

Пример полимеризации ДЦПД заключается в следующем.

Пример 1. Раствор 1,25 мг катализатора N1b и 0,33 г (1,2 мас.%) пентаэритритол тетракис(3,5-ди-трет-бутил-4-гидроксициннамата) в 26,44 г ДЦПД (мольное соотношение ДЦПД:катализатор = 100000:1) помещают в литьевую форму, нагретую до 50°С, и поднимают температуру до 200°С, и поддерживают эту температуру в течение 40 мин. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 157°C, модуль упругости на изгиб 1,65 ГПа, прочность при растяжении: предел текучести 60,3 МПа, разрушающее напряжение 50,3 МПа, относительное удлинение при разрыве 98%. Ударная вязкость по Изоду с надрезом 4,8 кДж/м2, твердость по Шору D83.

Изобретение иллюстрируется следующим примером.

Пример 2.

Синтез катализатора N1b проводят в условиях, исключающих попадание влаги и воздуха в реакционную систему. Используют технику и реакторы Шленка, подсоединенные к вакуумной системе и линии сухого аргона. Растворители: хлористый метилен, толуол, гексан, метанол абсолютируют по стандартным методикам и хранят в инертной атмосфере. Чистоту катализаторов оценивают на основании спектров протонного магнитного резонанса (ЯМР 1Н) и (или) тонкослойной хроматографии ТСХ (гексан/этилацетат 4/1).

В сосуд Шленка объемом 1000 мл помещают 15 г (15,64 ммоль) RuCl2(PPh3), 5,3 г (25,45 ммоль) 1,1-дифенил-2-пропин-1-ола, прибор заполняют аргоном. Добавляют 800 мл абсолютного тетрагидрофурана и кипятят в атмосфере аргона в течение 3 ч при перемешивании. Смесь упаривают в вакууме при комнатной температуре на 50% и прибавляют в токе аргона 14 г (50,04 ммоль) трициклогексилфосфина и перемешивают в течение 3 ч. Растворитель отгоняют в вакууме и к остатку добавляют 400 мл ацетона, после чего суспензию выдерживают при температуре -20°С в течение 10 ч. Осадок отфильтровывают и промывают метанолом 2 раза по 70 мл, ацетоном 2 раза по 80 мл и холодным гексаном 80 мл и высушивают в вакууме. Получают 15,3 г инденилиденового комплекса рутения In(1.2) с выходом 14,83 ммоль (94,8%).

Аналогичным образом получено 14,8 г In(1.2) с выходом 92% при проведении реакции в диоксане при кипячении вместо тетрагидрофурана.

В сосуд Шленка объемом 25 мл помещают 0,923 г (1 ммоль) In(1.2) 0,723 г (1,7 ммоль) 1,3-бис-(2,4,6-триметилфенил)-2-трихлорометилимидазолидина, 10 мл абсолютного толуола. Нагревают в инертной атмосфере при 70°С в течение 15 ч. Смесь охлаждают и в токе аргона добавляют 0,545 г (2,5 ммоль) 2-винилбензиламина S. Нагревают в инертной атмосфере в течение 6 ч. Смесь охлаждают и фильтруют. Толуол отгоняют в вакууме и остаток суспендируют в 5,5 мл гексана. Смесь выдерживают при температуре -20°С в течение 10 ч. Осадок отфильтровывают и промывают 3×2 мл гексаном и 2×2 мл метанолом. После высушивания в вакууме получают соединение N1a в виде зеленого порошка. Полученный порошок 0,464 г (0,68 ммоль) и 5 мл абсолютного дихлорметана помещают в сосуд Шленка объемом 25 мл. Перемешивают в инертной атмосфере при комнатной температуре в течение 100 ч. Дихлорметан отгоняют в вакууме и остаток суспендируют в 5,5 мл гексана. Смесь выдерживают при температуре -20°С в течение 10 ч. Осадок отфильтровывают и промывают 3×1 мл гексаном и 2×1 мл метанолом. После высушивания в вакууме получают 0,455 г катализатора N1b в виде зеленого порошка. Выход катализатора 68%, чистый по данным ТСХ и ЯМР. Спектр 1Н ЯМР (600 МГц, CD2Cl2) δ Н, м.д.: 1,86 (3Н, s, NCH 3), 2,05 (3Н, s, H3CNCH 3), 2,14 (3H, s, H 3CNCH3), 2,21-2,85 (20H, m, 6CH 3Ar+CH2CH2NMe2), 3,55 (1Н, d J=14,1 Hz, CH 2CH2NMe2), 3,87-4,28 (5H, m, NCH 2CH 2N+CH 2CH2NMe2), 5,36 (1Н, s, NCH 2Ar), 5,98 (1Н, s, NCH 2Ar), 6,87 (1Н, br.s, HAr), 7,08 (1Н, d J=7,5 Hz, HAr), 7,14 (1Н, br.s, HAr), 7,18 (1Н, br.s, HAr), 7,30 (1Н, d J=7,2 Hz, HAr), 7,36 (1Н, t J=7,5 Hz, HAr), 7,65 (1Н, t J=7,5 Hz, HAr), 19,15 (1Н, s, Ru=CH).

Катализатор метатезисной полимеризации дициклопентадиена может использоваться для промышленного производства изделий различных размеров из полидициклопентадиена. Получаемые полимеры не обладают запахом, механические и термические показатели соответствуют, а в ряде случаев превосходят таковые для промышленных материалов из полидициклопентадиена.

Похожие патенты RU2560151C1

название год авторы номер документа
КАТАЛИЗАТОР МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА, СОДЕРЖАЩИЙ ТИОБЕНЗИЛИДЕНОВЫЙ ФРАГМЕНТ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2015
  • Полянский Кирилл Борисович
  • Афанасьев Владимир Владимирович
  • Беспалова Наталья Борисовна
RU2583790C1
КАТАЛИЗАТОР МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА, СОДЕРЖАЩИЙ АЦЕТАМИДНЫЙ ФРАГМЕНТ, И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2015
  • Полянский Кирилл Борисович
  • Афанасьев Владимир Владимирович
  • Беспалова Наталья Борисовна
RU2574718C1
КАТАЛИЗАТОР МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА В ФОРМЕ РУТЕНИЕВОГО КОМПЛЕКСА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2014
  • Полянский Кирилл Борисович
  • Афанасьев Владимир Владимирович
  • Беспалова Наталья Борисовна
RU2545179C1
КАТАЛИЗАТОР МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2014
  • Полянский Кирилл Борисович
  • Афанасьев Владимир Владимирович
  • Беспалова Наталья Борисовна
RU2545176C1
КАТАЛИЗАТОР ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2011
  • Беспалова Наталья Борисовна
  • Чередилин Дмитрий Николаевич
  • Афанасьев Владимир Владимирович
  • Земцов Денис Борисович
RU2462308C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА 2008
  • Беспалова Наталья Борисовна
  • Афанасьев Владимир Владимирович
  • Долгина Татьяна Модестовна
RU2377257C1
КАТАЛИЗАТОР МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА, СПОСОБЫ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ЕГО ПОЛИМЕРИЗАЦИИ 2008
  • Афанасьев Владимир Владимирович
  • Долгина Татьяна Модестовна
  • Беспалова Наталья Борисовна
RU2393171C1
РУТЕНИЕВЫЙ КАТАЛИЗАТОР ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА И СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ) 2008
  • Афанасьев Владимир Владимирович
  • Низовцев Алексей Вадимович
  • Долгина Татьяна Модестовна
  • Беспалова Наталья Борисовна
RU2374269C2
РУТЕНИЕВЫЙ КАТАЛИЗАТОР МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА (ВАРИАНТЫ) И СПОСОБ ПОЛУЧЕНИЯ ПОЛИДИЦИКЛОПЕНТАДИЕНА (ВАРИАНТЫ) 2010
  • Колесник Василий Дмитриевич
  • Аширов Роман Витальевич
  • Щеглова Надежда Михайловна
  • Якимов Роман Викторович
  • Киселева Наталья Васильевна
  • Богомолова Мария Николаевна
RU2436801C1
РУТЕНИЕВЫЙ КАТАЛИЗАТОР МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2009
  • Колесник Василий Дмитриевич
  • Аширов Роман Витальевич
  • Щеглова Надежда Михайловна
  • Новикова Екатерина Сергеевна
  • Якимов Роман Викторович
  • Носиков Алексей Александрович
  • Богомолова Мария Николаевна
  • Черемухина Наталия Михайловна
RU2409420C1

Реферат патента 2015 года РУТЕНИЕВЫЙ КАТАЛИЗАТОР МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА В ФОРМЕ КАТИОННОГО КОМПЛЕКСА И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Изобретение относится к области гомогенного катализа и касается производства катализатора метатезисной полимеризации дициклопентадиена. Рутениевый катализатор полимеризации дициклопентадиена представляет собой [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]хлоро(2-((2-(диметиламиноэтилметиламино)метил))бензилиден)рутений хлорид в катионной форме формулы (1). В структуре катализатора используют принципиально новый заместитель, обеспечивающий новые свойства катализатора, позволяющие осуществлять управляемую полимеризацию дициклопентадиена в зависимости от задаваемой температуры полимеризации. Получают катализатор взаимодействием трифенилфосфинового комплекса рутения с 1,1-дифенил-2-пропин-1-олом в тетрагидрофуране или диоксане при температуре кипения растворителя в инертной атмосфере, а затем с трициклогексилфосфином при комнатной температуре в инертной атмосфере выделяют образовавшийся инденилиденовый комплекс рутения. Последний последовательно подвергают взаимодействию с 1,3-бис-(2,4,6-триметилфенил)-2-трихлорометилимидазолидином и 2-винилбензиламином с формулой (2), после чего полученное соединение перемешивают в дихлорметане при комнатной температуре в инертной атмосфере, образовавшийся продукт выделяют из реакционной смеси и высушивают. Изобретение обеспечивает возможность задавать время начала и скорость полимеризации с высокой точностью, высокий выход катализатора, активность и чистоту катализатора и минимизацию побочных примесей в процессе синтеза, расширение технологических возможностей при полимеризации дициклопентадиена и получение изделия из полидициклопентадиена с высокими потребительскими свойствами. 2 н.п. ф-лы, 2 пр.

Формула (1)

Формула (2)

Формула изобретения RU 2 560 151 C1

1. Рутениевый катализатор метатезисной полимеризации дициклопентадиена, представляющий собой [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]хлоро(2-((2-(диметиламиноэтилметиламино)метил))бензилиден)рутений хлорид в форме катионного комплекса формулы

2. Способ получения катализатора по п.1, характеризующийся тем, что трифенилфосфиновый комплекс рутения подвергают взаимодействию с 1,1-дифенил-2-пропин-1-олом в тетрагидрофуране или диоксане при температуре кипения растворителя в инертной атмосфере, а затем с трициклогексилфосфином при комнатной температуре в инертной атмосфере выделяют образовавшийся инденилиденовый комплекс рутения, который последовательно подвергают взаимодействию с 1,3-бис-(2,4,6-триметилфенил)-2-трихлорометилимидазолидином и 2-винилбензиламином с формулой

после чего полученное соединение перемешивают в дихлорметане при комнатной температуре в инертной атмосфере, проводят выделение и сушку целевого катализатора.

Документы, цитированные в отчете о поиске Патент 2015 года RU2560151C1

КАТАЛИЗАТОР ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2011
  • Беспалова Наталья Борисовна
  • Чередилин Дмитрий Николаевич
  • Афанасьев Владимир Владимирович
  • Земцов Денис Борисович
RU2462308C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА 2008
  • Беспалова Наталья Борисовна
  • Афанасьев Владимир Владимирович
  • Долгина Татьяна Модестовна
RU2377257C1
US 20050261451 A1, 24.11.2005
US 5969170 A, 19.10.1999

RU 2 560 151 C1

Авторы

Полянский Кирилл Борисович

Афанасьев Владимир Владимирович

Беспалова Наталья Борисовна

Даты

2015-08-20Публикация

2014-01-29Подача