Изобретение относится к области измерительной и космической техники, может быть использовано для контроля герметичности космических аппаратов (КА) и является усовершенствованием известного устройства, описанного в патенте RU №2427813.
Известный датчик вакуума содержит корпус, коаксиальный цилиндрический анод, дисковые катоды, соединенные центральным стержнем, и магнитную систему, составленную из двух дисковых постоянных магнитов, которые вместе с коаксиальным цилиндрическим анодом и дисковыми катодами размещены в корпусе датчика с отверстиями, коаксиальный цилиндрический анод также выполнен с отверстиями, внутри коаксиального цилиндрического анода на дисковых катодах расположены дисковые постоянные магниты, и каждая пара дисковых катодов и дисковых магнитов скреплена между собой и закреплена внутри цилиндрического анода диэлектрическими держателями (патент RU №2427813, кл. G01L 21/34, от 27.08.2011 г., Бюл. №24).
Недостатком данного устройства является недостаточная вибростойкость конструкции датчика вакуума и недостаточно высокая электрическая прочность клемм для подачи высокого напряжения на электроды датчика вакуума.
Задача, решаемая изобретением, заключается в увеличении электрической прочности и вибростойкости конструкции датчика вакуума.
Ожидаемый технический результат достигается тем, что в датчике вакуума по патенту RU №2427813, содержащем корпус, коаксиальный цилиндрический анод, дисковые катоды, соединенные центральным стержнем, и магнитную систему, составленную из двух дисковых постоянных магнитов, которые вместе с коаксиальным цилиндрическим анодом и дисковыми катодами размещены в корпусе датчика с отверстиями, коаксиальный цилиндрический анод также выполнен с отверстиями, внутри коаксиального цилиндрического анода на дисковых катодах расположены дисковые постоянные магниты, и каждая пара дисковых катодов и дисковых магнитов скреплена между собой и закреплена внутри цилиндрического анода диэлектрическими держателями, верхний и нижний диэлектрические держатели выполнены из фторопласта, нижний диэлектрический держатель с клеммами для подачи высокого напряжения установлен на основании, которое прикреплено к корпусу винтами, а воздушные полости между корпусом и верхним диэлектрическим держателем и основанием и нижним диэлектрическим держателем заполнены герметиком.
На фиг.1 приведена конструкция датчика вакуума.
Датчик вакуума содержит корпус 1, коаксиальный цилиндрический анод 2, катод 3, состоящий из двух металлических дисков 3.1 и 3.2, соединенных между собой металлическим центральным стержнем 3.3, и магнитную систему 4, составленную из двух дисковых постоянных магнитов 4.1 и 4.2, которые вместе с коаксиальным цилиндрическим анодом 2 и катодом 3 размещены в корпусе 1. Корпус 1 и коаксиальный цилиндрический анод 2 выполнены с отверстиями 5 и 6 соответственно. Внутри коаксиального цилиндрического анода 2 на дисковых частях катода 3.1 и 3.2 расположены дисковые постоянные магниты 4.1 и 4.2 соответственно. Катод 3 вместе с дисковыми постоянными магнитами 4.1 и 4.2 зафиксирован внутри цилиндрического анода 2 диэлектрическими держателями 7 и 8. Нижний диэлектрический держатель 7 вместе с клеммами для подачи высокого напряжения 9 и 10 установлен на основании 11, которое прикреплено к корпусу 1 винтами 12. Воздушные полости между корпусом 1 и верхним диэлектрическим держателем 8 и основанием 11 и нижним диэлектрическим держателем 7 заполнены герметиком 13. Кроме того, диэлектрические держатели 7 и 8 выполнены из фторопласта.
Принцип действия датчика вакуума основан на ионизационном разряде в скрещенных магнитном и электрическом полях. Заявленный датчик вакуума в условиях функционирования размещается на элементе поверхности КА в вакуумной среде, с которой датчик связан через отверстия 5 в своем корпусе 1 и отверстия 6 в цилиндрическом корпусе анода 2. Внутри датчика вакуума, в объеме между цилиндрическим анодом 2 и катодом 3 с наложенными на дисковые части катода 3.1 и 3.2 постоянными магнитами 4.1 и 4.2, создается постоянное однородное магнитное поле, поперечное радиальному электрическому полю внутри цилиндрического анода 2, которое возбуждается при подаче на анод 2 высокого (~2,5 кВ) напряжения через высоковольтные клеммы 9 и 10. Сильное электрическое поле вырывает из катода 3 электроны. Индукция магнитного поля Вм устанавливается больше критического значения, препятствующего непосредственному попаданию электрона на анод, соответствующего значению Вм.крит<Вм=0,1 Тл. Поэтому электроны двигаются к аноду 2 не прямолинейно, а по спирали, благодаря чему увеличивается длина их пробега в межэлектродном пространстве. Большая часть электронов на своем пути сталкивается с нейтральными молекулами газа. При этом газ ионизируется, и по цепи анод 2 - катод 3 протекает ионизационный ток разряда. Величина ионизационного тока прямо пропорциональна количеству молекул в разрядном объеме между анодом 2 и катодом 3, а следовательно, и величине давления Р. Таким образом, измеряя величину разрядного тока датчика вакуума, определяют давление среды, окружающей его.
Как известно, в диапазоне давлений 0,3-1,0 мм рт.ст. согласно закону Пашена находится минимум напряжения, необходимого для возникновения разрядного процесса. Он составляет ~300-400 В. Поэтому для исключения возможности возникновения «паразитного» разрядного процесса между клеммами 9 и 10 для подачи высокого напряжения нижняя полость между основанием и нижним диэлектрическим держателем с клеммами для подачи высокого напряжения 9 и 10 заполнена герметиком (компаунд Виксинт ПКФ-68, ТУ38.103508-81). Электрическая прочность этого компаунда составляет 15 кВ/мм и значительно превышает напряжение пробоя воздушного промежутка (2 кВ/мм при нормальном давлении). Этим же герметиком заполнена и верхняя полость, образованная между верхним диэлектрическим держателем 8 и корпусом 1. Это позволяет исключить зазоры между конструктивными элементами датчика вакуума и за счет эластичности герметика значительно повысить вибростойкость датчика вакуума. Предварительные испытания датчика вакуума показали, что герметик (Виксинт ПКФ-68) не влияет на метрологические характеристики датчика в требуемом диапазоне измерения давлений Р=10-2-10-6 мм рт.ст., при этом значительно повышает его вибростойкость (не менее 20g в диапазоне частот от 20 до 2000 Гц) и электрическую прочность.
название | год | авторы | номер документа |
---|---|---|---|
Датчик вакуума | 2018 |
|
RU2680672C1 |
ДАТЧИК ВАКУУМА | 2010 |
|
RU2427813C1 |
УСТРОЙСТВО ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЯ ВАКУУМНО-ДУГОВЫМ ИСПАРЕНИЕМ | 2018 |
|
RU2685828C1 |
УСТРОЙСТВО ДЛЯ НАПЫЛЕНИЯ ПЛЕНОК В ПЛАЗМЕ | 1992 |
|
RU2019576C1 |
Аппарат для электрохимической обработки жидкости | 1989 |
|
SU1745687A1 |
ЭЛЕКТРОДНАЯ СИСТЕМА СКВАЖИННОГО ЭЛЕКТРОГИДРОИМПУЛЬСНОГО УСТРОЙСТВА | 2010 |
|
RU2441147C1 |
УСТАНОВКА ДЛЯ НАНЕСЕНИЯ ЗАЩИТНЫХ ПОКРЫТИЙ | 2000 |
|
RU2187576C2 |
Магнетронная распылительная головка | 2017 |
|
RU2656318C1 |
ПРОТИВОУГОННОЕ УСТРОЙСТВО ДЛЯ ТРАНСПОРТНОГО СРЕДСТВА | 1992 |
|
RU2033354C1 |
КИСЛОТНЫЙ АККУМУЛЯТОР | 2000 |
|
RU2185692C2 |
Изобретение относится к области измерительной и космической техники и может быть использовано для контроля герметичности космических аппаратов. Техническим результатом изобретения является увеличение электрической прочности и вибростойкости конструкции датчика вакуума. Датчик вакуума содержит корпус, коаксиальный цилиндрический анод, дисковые катоды и магнитную систему, составленную из двух дисковых постоянных магнитов, которые вместе с коаксиальным цилиндрическим анодом и дисковыми катодами размещены в корпусе датчика с отверстиями. Коаксиальный цилиндрический анод выполнен с отверстиями, внутри коаксиального цилиндрического анода на дисковых катодах расположены дисковые постоянные магниты, и каждая пара дисковых катодов и дисковых магнитов скреплена между собой и закреплена внутри цилиндрического анода диэлектрическими держателями. Верхний и нижний диэлектрические держатели выполнены из фторопласта или материала с подобными диэлектрическими свойствами, нижний диэлектрический держатель с клеммами для подачи высокого напряжения установлен на основании, которое прикреплено к корпусу винтами, а воздушные полости между корпусом и верхним диэлектрическим держателем и основанием и нижним диэлектрическим держателем заполнены герметиком. 1 ил.
Датчик вакуума, содержащий корпус, коаксиальный цилиндрический анод, дисковые катоды, соединенные центральным стержнем, и магнитную систему, составленную из двух дисковых постоянных магнитов, которые вместе с коаксиальным цилиндрическим анодом и дисковыми катодами размещены в корпусе датчика с отверстиями, коаксиальный цилиндрический анод также выполнен с отверстиями, внутри коаксиального цилиндрического анода на дисковых катодах расположены дисковые постоянные магниты, и каждая пара дисковых катодов и дисковых магнитов скреплена между собой и закреплена внутри цилиндрического анода диэлектрическими держателями, отличающийся тем, что верхний и нижний диэлектрические держатели выполнены из фторопласта, нижний диэлектрический держатель с клеммами для подачи высокого напряжения установлен на основании, которое прикреплено к корпусу винтами, а воздушные полости между корпусом и верхним диэлектрическим держателем и основанием и нижним диэлектрическим держателем заполнены герметиком.
ДАТЧИК ВАКУУМА | 2010 |
|
RU2427813C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ДАТЧИКА ВАКУУМА С НАНОСТРУКТУРОЙ И ДАТЧИК ВАКУУМА НА ЕГО ОСНОВЕ | 2012 |
|
RU2485465C1 |
Вакуумметр | 1989 |
|
SU1820251A1 |
US 6474171 В1, 05.11.2002 |
Авторы
Даты
2015-08-27—Публикация
2014-04-30—Подача