СПОСОБ ЭКСПЛУАТАЦИИ ПОДВОДНОЙ ЛОДКИ, А ТАКЖЕ ПОДВОДНАЯ ЛОДКА Российский патент 2015 года по МПК B63G8/08 

Описание патента на изобретение RU2561476C2

Изобретение относится к способу эксплуатации подводной лодки согласно ограничительной части пункта 1 формулы изобретения или к подводной лодке согласно ограничительной части пункта 8 формулы изобретения.

Пропульсивная система привода подводной лодки, описанная в патенте WO 2004/068694, содержит электрическую машину, выполненную в виде синхронной машины с ротором с возбуждением от постоянного магнита и со статором с установленной в нем статорной обмоткой, содержащей множество фаз обмотки, например 24 фазы обмотки. При этом для каждой из фазных обмоток имеется соответствующий отдельный однофазный вентильный преобразователь частоты для подпитки фазной обмотки электрическим током. При этом вентильные преобразователи частоты для подпитки фазных обмоток находятся внутри модульных вентильных преобразователей частоты и установлены на стенде преобразователя в осевом направлении между подшипниковыми щитами со сторон А и В. При этом вентильные преобразователи выступают в промежуточное пространство, образованное валом синхронной машины и несущей ротор втулкой ротора, прочно на скручивание закрепленной на валу.

Такие пропульсивные системы привода подводных лодок пользуются большой популярностью за свою большую компактность, за связанную с этим незначительную потребность в месте и за малые шумы, производимые при работе, и сбываются заявителем, например, под фирменным знаком «SINAVY Permasyn».

Однофазный вентильный преобразователь частоты, приданный каждой фазной обмотке, снабжается электроэнергией от источника питания постоянного тока. При этом каждый импульсный вентильный преобразователь частоты обычно содержит два полумоста, каждый с двумя полупроводниковыми переключателями. С помощью соответствующих устройств управления переключатели управляются таким образом, что на выходных зажимах импульсного вентильного преобразователя частоты и тем самым на подсоединенной там фазной обмотке устанавливается желательное напряжение. При этом выходное напряжение возникает как разностное напряжение выходных потенциалов обоих полумостов.

При этом двигатель имеет два рабочих режима или рабочих диапазона:

а) Первый рабочий режим для работы двигателя с оптимальным коэффициентом полезного действия и с акустически оптимальными шумами в режиме малых оборотов двигателя, когда две соответствующие фазные обмотки посредством добавочного дросселя включены последовательно и подпитываются от соответствующего полумоста импульсных вентильных преобразователей частоты, приданных обеим фазным обмоткам. В этом случае все схемы последовательного включения фазных обмоток, вытекающие из этого и подпитываемые постоянным напряжением от общего источника питания постоянного тока, снова в свою очередь включены параллельно друг другу.

б) Второй рабочий режим для работы на сравнительно больших оборотах и для больших приводных мощностей, когда все фазные обмотки подпитываются от соответствующего установленного внутри импульсного вентильного преобразователя частоты, и при этом все фазные обмотки, подпитываемые постоянным напряжением от источника питания постоянного тока, включены параллельно друг другу.

Электрическая схема такого переключения описана, например, в патентах ЕР 0334112 В1 и DE 3345271 А.

При этом определена рабочая точка, по достижении которой происходит переключение с первого режима работы на второй или наоборот. Рабочая точка может быть определена, например, пороговой величиной числа оборотов приводного двигателя, причем эта пороговая величина в свою очередь определена максимально допустимым номинальным током в схеме последовательного включения фазных обмоток.

Поскольку в случае судна или лодки приводная мощность и тем самым нагрузочный ток связаны с числом оборотов согласно характеристике винта, можно получить число оборотов, начиная с которого наступает превышение допустимого номинального тока.

Если двигатель находится в первом рабочем режиме и пороговая величина для числа оборотов превышается, приводной двигатель переключается устройством управления на второй рабочий режим. Если двигатель, наоборот, находится во втором рабочем режиме и пороговая величина для числа оборотов превышается, приводной двигатель переключается устройством управления со второго рабочего режима на первый.

Исходя из этого задачей настоящего изобретения при способе согласно ограничительной части пункта 1 формулы изобретения или при подводной лодке согласно ограничительной части пункта 8 формулы изобретения является достижение возможно более длительной работы двигателя в первом рабочем режиме, т.е. при оптимизации, например, в отношении коэффициента полезного действия и акустических шумов.

Решение задачи, относящейся к способу, удается согласно отличительной части пункта 1 формулы изобретения за счет того, что при надводном плавании подводной лодки для переключения выбирается иная рабочая точка, нежели чем при подводном плавании подводной лодки.

При этом за основу берется понимание того, что до сих пор рабочую точку для переключения приходилось получать по характеристике винта для надводного плавания, поскольку она имеет более крутой ход, чем характеристика винта для подводного плавания, и что таким образом она является «более критической», т.е. с увеличением числа оборотов приводит к большим токам в фазной обмотке, чем при подводном плавании. Однако при учете режима плавания подводной лодки могут учитываться, соответственно, связанные с этим разные характеристики винта для надводного и подводного плаваний и тем самым могут получаться рабочая точка для переключения при надводном плавании и отличная от нее рабочая точка для переключения при подводном плавании. Поскольку ход характеристики винта при подводном плавании является более пологим, чем ход характеристики винта при надводном плавании, существует диапазон числа оборотов, при котором двигатель в случае подводного плавания еще находится в первом рабочем режиме, однако в случае надводного плавания уже во втором рабочем режиме. Таким образом с помощью способа согласно изобретению в случае подводного плавания работа в первом рабочем режиме, т.е., например, при оптимизации в отношении коэффициента полезного действия и акустических шумов, может продлеваться. При этом особым преимуществом является то, что это возможно без необходимости в серьезных конструктивных изменениях двигателя.

Предпочтительно, первым рабочим режимом является режим, в котором приводной двигатель оптимизирован в отношении своего коэффициента полезного действия и своих акустических шумов.

Рабочий режим для переключения может быть особенно просто определен пороговой величиной числа оборотов приводного двигателя. Однако пороговые величины возможны также для других рабочих параметров.

Пороговая величина числа оборотов может быть получена по пороговой величине для максимально допустимого номинального тока за счет соответствующего числа последовательно включенных фазных обмоток, т.е. за счет схемы последовательного включения фазных обмоток, и по характеристике винта.

Режим плавания особенно просто может быть определен путем регистрации глубины погружения подводной лодки. Для этого в распоряжении имеются разные возможности, известные специалисту. Предпочтительно регистрация глубины погружения осуществляется системой автоматизации более высокого уровня иерархии.

В одном из конструктивно особенно простых вариантов осуществления фазные обмотки посредством двух соответствующих полумостов подсоединены к источнику питания постоянного тока.

Для простоты изготовления схемы последовательного включения соответствующего числа фазных обмоток два соответствующих полумоста из этих фазных обмоток могут быть соединены друг с другом коммутирующим элементом.

Решение задачи, относящейся к подводной лодке, согласно отличительной части пункта 8 формулы изобретения удается за счет того, что устройство управления выполнено таким образом, что во время надводного плавания подводной лодки оно выбирает иную рабочую точку для переключения, нежели чем при подводном плавании подводной лодки.

Согласно предпочтительной форме исполнения подводной лодки первым рабочим режимом является режим, в котором приводной двигатель оптимизирован в отношении своего коэффициента полезного действия и своих акустических шумов.

Предпочтительно рабочая точка определена пороговой величиной числа оборотов приводного двигателя.

Предпочтительно пороговая величина числа оборотов получается из пороговой величины максимально допустимого номинального тока с помощью последовательно включенных фазных обмоток и характеристики винта.

Фазные обмотки посредством двух соответствующих полумостов, предпочтительно, подсоединены к источнику питания постоянного тока.

Согласно другому предпочтительному варианту осуществления для последовательного включения соответствующего числа фазных обмоток два соответствующих полумоста их этих фазных обмоток соединяются друг с другом коммутирующим элементом.

Преимущества, указанные для способа согласно изобретению и его предпочтительных вариантов осуществления, относятся, соответственно, к подводной лодке согласно изобретению и к ее соответствующим предпочтительным формам исполнения.

Ниже изобретение, а также его другие предпочтительные варианты осуществления более подробно поясняются на примерах выполнения на фигурах, на которых

Фиг.1 изображает местный разрез принципиального варианта осуществления пропульсивной системы привода для подводной лодки с синхронной машиной с возбуждением от постоянного магнита и с импульсными вентильными преобразователями частоты, установленными в корпусе машины,

Фиг.2 - подводную лодку с пропульсивной системой привода на Фиг.1,

Фиг.3 - принципиальную схему расположения фазных обмоток и импульсных вентильных преобразователей частоты приводного двигателя на Фиг.1,

Фиг.4 - принципиальную схему питания двух фазных обмоток, включенных параллельно и последовательно, и

Фиг.5 - диаграмму с характеристиками винта для надводного и подводного плавания.

На Фиг.1 в принципиальном виде в местном разрезе изображена пропульсивная система 1 привода подводной лодки, которая, как показано на Фиг.2, обычно установлена в кормовой части 102 подводной лодки 100 и приводит во вращение винт 101 для привода подводной лодки 100. В случае подводной лодки 100 речь идет, например, об обычной подводной лодке с экипажем от 50 до 100 человек. Пропульсивная система 1 привода имеет, например, мощность 0,5-2 МВт.

Пропульсивная система 1 привода подводной лодки содержит выполненный в виде синхронной машины приводной двигатель 2 с ротором 3 с возбуждением от постоянного магнита и со статором 4 со статорной обмоткой 5. При этом статорная обмотка 5, как это, в частности, вытекает из принципиальной схемы на Фиг.3, делится на множество фазных обмоток 6, 6', из которых в случае стандартной обмотки 5, в принципе изображенной на Фиг.3, предусмотрены 24 фазных обмотки 6, 6'.

Приводной двигатель 2 содержит корпус 10 машины, окружающий внутреннее пространство 19, в котором установлены ротор 3 и статор 4. Корпус 10 машины формируется в осевом направлении, т.е. в направлении оси вращения вала 9 машины, подшипниковыми щитами 11 и 12 со сторон А и В.

При этом для каждой из фазных обмоток 6, 6' имеется соответствующий отдельный импульсный вентильный преобразователь 7 частоты для подпитки соответствующей фазной обмотки 6, 6' электрическим током (см. Фиг.3). При этом подсоединение каждой отдельной фазной обмотки 6, 6' к приданному ей вентильному преобразователю 7 частоты осуществляется посредством соединительных проводов 8.

Вентильные преобразователи 7 частоты, питающие статорную обмотку 5, установлены внутри двигателя 2 между подшипниковыми щитами 11 и 12 со сторон А и В на стенде 13 преобразователя и находятся в преобразовательных модулях 14. При этом преобразовательные модули 14 выступают в промежуточное пространство 20, образованное между валом 9 двигателя 2 и прочно на скручивание закрепленной на нем колоколообразной втулкой 21 ротора, несущей ротор 3. Вместо колоколообразной втулки 21 ротора может быть использована также Т-образная втулка ротора, образующая по обе стороны вала 9 ротора соответствующее промежуточное пространство 20, в которое выступают преобразовательные модули 14.

В примере выполнения, изображенном на Фиг.3, в один преобразовательный модуль 14 собраны по два вентильных преобразователя 7 частоты, выполненных в качестве инверторов, а именно вентильные преобразователи WR101 и WR102, WR103 и WR104, WR105 и WR106, WR107 и WR108, WR109 и WR110, WR111 и WR112, WR201 и WR202, WR203 и WR204, WR205 и WR206, WR207 и WR208, WR209 и WR210, WR211 и WR212.

Шесть преобразовательных модулей 14 для подпитки фазных обмоток 6 подключены посредством предусмотренной для них соединительной линии 15 к части 17 сети источника питания постоянного тока подводной лодки, здесь - бортовой сети постоянного тока подводной лодки. Шесть преобразовательных модулей 14 для подпитки фазных обмоток 6' подсоединены посредством предусмотренной для них соединительной линии 16 к части 18 сети источника питания постоянного тока.

Вместо двух вентильных преобразователей 7 частоты в каждом модульном преобразователе 14 частоты в один преобразовательный модуль 14 могут быть сведены более двух вентильных преобразователя 7 частоты.

При этом двигатель имеет один первый рабочий режим, при котором каждые две фазные обмотки 6 и 6' соединены последовательно, и второй рабочий режим, при котором все фазные обмотки 6 и 6' соединены параллельно друг другу.

В принципиальной схеме на Фиг.4 изображена подпитка двух соответствующих фазных обмоток 6 в качестве примера для вентильных преобразователей частоты WR101 и WR102. Соответствующая функциональность имеет место и для других вентильных преобразователей частоты или пар вентильных преобразователей частоты системы 1 привода.

Вентильные преобразователи частоты WR101 и WR102 с помощью токопроводящих и находящихся под напряжением линий 15, 15' с положительным потенциалом +UDC и с отрицательным потенциалом -UDC подсоединены к источнику питания постоянного тока.

Однофазные импульсные вентильные преобразователи частоты WR101 и WR102 содержат по два соответствующих полумоста W1, W1' и W2, W2'. Каждый из полумостов W1, W1', W2, W2' содержит по одному полупроводниковому переключателю (например, в виде биполярного транзистора с изолированным затвором) установленному, соответственно, во входной и выходной ветвях. В случае полумостов W1 и W1' это переключатели SE1 и SA1, SE1' и SA1', соответственно. В случае полумостов W2 и W2' это переключатели SE2 и SA2, SE2' и SA2', соответственно. При этом индекс «Е» означает переключатель, установленный во входной ветви, а индекс «А» переключатель, установленный в выходной ветви.

Посредством соответствующего подходящего устройства 30 управления для каждого из вентильных преобразователей частоты WR101, WR102 переключатели SE1, SA1, SE1', SA1' и SE2, SA2, SE2', SA2', соответственно, управляются таким образом, чтобы на выходных зажимах вентильных преобразователей WR101 и WR102 частоты и тем самым на соответствующих подключенных там фазных обмотках 6 устанавливалось желательное напряжение.

При этом фазная обмотка 6, относящаяся к вентильному преобразователю WR101 частоты, посредством переключателя S1 отключается от второго полумоста W1' вентильного преобразователя WR101 частоты, а фазная обмотка 6, сама по себе относящаяся к вентильному преобразователю WR102 частоты, посредством переключателя S2 отключается от первого полумоста W2 вентильного преобразователя WR102 частоты. Кроме того, посредством переключателя S3 фазная обмотка 6, относящаяся к вентильному преобразователю WR101 частоты, по цепи 31, в которую включен добавочный дроссель 32, включается последовательно с фазной обмоткой 6, относящейся к вентильному преобразователю WR102 частоты. Таким образом обе фазные обмотки 6 по схеме последовательного включения могут снабжаться электрической энергией через первый полумост W1 первого вентильного преобразователя WR101 частоты и через второй полумост W2´ второго вентильного преобразователя WR102 частоты. Добавочный дроссель 32 служит для сглаживания тока во избежание высших гармоник и вызываемых ими моментов качания двигателя.

Посредством устройств 30 управления переключатели SE1, SA1, SE2', SA2' управляются таким образом, чтобы в схеме последовательного включения фазных обмоток 6 устанавливалось желательное напряжение.

Если обе фазные обмотки 6 работают по схеме последовательного включения, приводной двигатель для оптимизации коэффициента полезного действия и акустических шумов находится в первом рабочем режиме двигателя.

Если переключатели 3 разомкнуты, а переключатели S1 и S2 замкнуты, то каждая фазная обмотка 6 подпитывается через приданный ей вентильный преобразователь WR101 или WR102 частоты. В этом случае все фазные обмотки включены параллельно друг другу, а приводной двигатель 2 находится во втором рабочем режиме.

Устройство 40 управления служит для переключения приводного двигателя 2 с первого рабочего режима на второй или наоборот, когда приводной двигатель 2 достигает определенной рабочей точки. Для этого устройство 40 управления регистрирует с помощью автоматизированной системы подводной лодки 100 информацию о режиме плавания подводной лодки 100 (например, в виде информации о глубине Т погружения подводной лодки) и о числе n оборотов приводного двигателя и в зависимости от этой информации подает устройствам 30 управления вентильных преобразователей WR101 или WR102 частоты, а также переключателям S1, S2, S3 команды управления.

При этом устройство 40 управления выполнено таким образом, что при надводном плавании подводной лодки она имеет иную рабочую точку для переключения, нежели чем при подводном плавании подводной лодки.

Рабочая точка для переключения в примере выполнения определяется пороговой величиной числа оборотов приводного двигателя 2. Эта пороговая величина в свою очередь определяется допустимым номинальным током, протекающим через схему последовательного включения фазных обмоток 6. Допустимый номинальный ток в свою очередь в решающей степени определяется токовой нагрузкой на дроссель 32.

Как показано на Фиг.5, для судна или лодки приводная мощность Р и тем самым нагрузочный ток связаны с числом n оборотов приводного двигателя через характеристику винта. При этом через Ps обозначается характеристика винта для надводного плавания, а через Pt - характеристика винта для подводного плавания. Таким образом удается получать число оборотов, начиная с которого превышается максимально допустимый номинальный ток. Однако при этом учитывается, находится ли подводная лодка в подводном или надводном плавании. При надводном плавании на основе характеристики Ps винта при надводном плавании для максимальной приводной мощности Pmax, соответствующей максимальному току, при работе двигателя 2 в первом рабочем режиме получается максимальное число ns,max. Соответственно, при подводном плавании на основе характеристики Pt винта при подводном плавании для максимальной приводной мощности Pmax, соответствующей максимальному току, при работе двигателя 2 в первом рабочем режиме получается максимальное число nt,max. Пороговые величины ns,max и nt,max записываются в устройстве 30 управления. В этом случае для чисел n < ns,max или nt,max оборотов двигатель 2 находится в первом рабочем режиме, а в случае чисел n > ns,max или nt,max оборотов двигатель 2 находится во втором рабочем режиме.

Если двигатель 2 находится в первом рабочем режиме, устройство 40 управления в случае надводного плавания при увеличении чисел оборотов по достижении числа ns,max оборотов, а в случае подводного плавания по достижении числа nt,max оборотов вызывает переключение на второй рабочий режим.

Если двигатель 2, наоборот, находится во втором рабочем режиме, устройство 40 управления в случае надводного плавания при уменьшении чисел оборотов по достижении числа ns,max оборотов, а в случае подводного плавания по достижении числа nt,max оборотов вызывает переключение на первый рабочий режим, поскольку характеристика Ps винта для надводного плавания проходит круче, чем характеристика Pt винта для подводного плавания, nt,max > ns,max. Таким образом с учетом режима плавания подводной лодки 100 при подводном плавании для чисел оборотов в диапазоне от ns,max до nt,max еще обеспечивается работа в первом рабочем режиме, в то время как при надводном плавании она больше невозможна.

Похожие патенты RU2561476C2

название год авторы номер документа
АТОМНАЯ ПОДВОДНАЯ ЛОДКА 2012
  • Болотин Николай Борисович
  • Нефедова Елена Николаевна
  • Болотина Марина Николаевна
  • Нефедова Марина Леонардовна
RU2494004C1
АТОМНАЯ ПОДВОДНАЯ ЛОДКА И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ МОРСКОГО ИСПОЛНЕНИЯ 2011
  • Болотин Николай Борисович
  • Нефедова Елена Николаевна
  • Болотина Марина Николаевна
RU2481233C1
ПОДВОДНАЯ ЛОДКА И ДВИГАТЕЛЬНАЯ УСТАНОВКА ПОДВОДНОЙ ЛОДКИ 2012
  • Болотин Николай Борисович
RU2501705C1
"Игрушка "Подводная лодка" 1990
  • Переверзев Борис Митрофанович
SU1824213A1
ПОДВОДНАЯ ЛОДКА И ДВИГАТЕЛЬНАЯ УСТАНОВКА ПОДВОДНОЙ ЛОДКИ 2012
  • Болотин Николай Борисович
RU2502631C1
ПОДВОДНАЯ ЛОДКА 1992
  • Снегов Анатолий Александрович
RU2027634C1
МОДУЛЬНАЯ АТОМНАЯ ПОДВОДНАЯ ЛОДКА 2012
  • Болотин Николай Борисович
  • Нефедова Марина Леонардовна
RU2507107C1
АТОМНАЯ ПОДВОДНАЯ ЛОДКА 2012
  • Болотин Николай Борисович
RU2506198C1
РАДИОБУЙ ПОДВОДНОЙ ЛОДКИ 2017
  • Новиков Александр Владимирович
  • Шередега Владимир Анатольевич
RU2688544C1
ПОДВОДНАЯ ЛОДКА КАШЕВАРОВА "ПЛК" 1992
  • Кашеваров Юрий Борисович
RU2093411C1

Иллюстрации к изобретению RU 2 561 476 C2

Реферат патента 2015 года СПОСОБ ЭКСПЛУАТАЦИИ ПОДВОДНОЙ ЛОДКИ, А ТАКЖЕ ПОДВОДНАЯ ЛОДКА

Группа изобретений относится к оборудованию для подводных лодок. При способе эксплуатации подводной лодки используют приводной двигатель, подпитываемый через импульсные вентильные преобразователи частоты. В зависимости от вариантов подключения его фазных обмоток получают два режима его работы для подводного и надводного плавания соответственно. Для первого режима оптимизируют коэффициент полезного действия приводного двигателя и его акустические шумы. Переключение режимов происходит при достижении определенной рабочей точки, определяемой в зависимости от числа оборотов приводного двигателя, тока фазных обмоток, характеристики винта. Подводная лодка содержит приводной двигатель, содержащий обмотку, разделенную на несколько фазных обмоток, которые могут подключаться двумя способами - последовательно и параллельно. Фазные обмотки подсоединены к источнику питания постоянного тока посредством двух полумостов. Для последовательного включения фазных обмоток используют два полумоста и коммутирующий элемент. Обеспечивается оптимизация режимов работы двигателя. 2 н. и 11 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 561 476 C2

1. Способ эксплуатации подводной лодки (100), содержащей подпитываемый через импульсные вентильные преобразователи частоты приводной двигатель (2) с обмоткой (5), разделенной на несколько фазных обмоток (6, 6'), причем двигатель (2) имеет первый рабочий режим, при котором соответствующее число фазных обмоток (6, 6'), предпочтительно каждые две из фазных обмоток (6, 6 ), включены последовательно, и второй рабочий режим, при котором фазные обмотки (6, 6') включены параллельно и причем определена рабочая точка (ns,max; nt,max), по достижении которой происходит переключение с первого рабочего режима на второй или наоборот, отличающийся тем, что при надводном плавании подводной лодки выбирается иная рабочая точка для переключения, нежели чем при подводном плавании подводной лодки.

2. Способ по п. 1, отличающийся тем, что первым рабочим режимом является режим, в котором приводной двигатель (2) оптимизирован в отношении своего коэффициента полезного действия и своих акустических шумов.

3. Способ по п. 1 или 2, отличающийся тем, что рабочая точка определена пороговой величиной для числа оборотов приводного двигателя (2).

4. Способ по п. 3, отличающийся тем, что пороговая величина для числа оборотов получается из пороговой величины для максимального номинального тока через соответствующее число последовательно включенных фазных обмоток (6, 6') и по характеристике (Ps, Pt) винта.

5. Способ по п. 1 или 2, отличающийся тем, что режим плавания определяется регистрацией глубины погружения подводной лодки.

6. Способ по п. 1 или 2, отличающийся тем, что фазные обмотки (6, 6') подсоединены к источнику (17) питания постоянного тока посредством двух полумостов (Wl, W1' и W2, W2 ).

7. Способ по п. 6, отличающийся тем, что для последовательного включения соответствующего числа фазных обмоток (6, 6') каждые два полумоста (Wl, W1' и W2, W2') их этих фазных обмоток (6, 6') соединяются друг с другом соответствующим коммутирующим элементом.

8. Подводная лодка (100) с подпитываемым через импульсные вентильные преобразователи частоты приводным двигателем (2), содержащим обмотку (5), разделенную на несколько фазных обмоток (6, 6'), причем двигатель (2) имеет первый рабочий режим, при котором соответствующее число фазных обмоток (6, 6'), предпочтительно каждые две из фазных обмоток (6, 6'), включены последовательно, и второй рабочий режим, при котором фазные обмотки (6, 6') включены параллельно, и с управляющим устройством (40) для переключения с первого рабочего режима на второй или наоборот, когда приводной двигатель (2) достигает определенной рабочей точки (ns,max; nt,max), отличающаяся тем, что устройство (40) управления выполнено таким образом, что при надводном плавании подводной лодки (100) оно выбирает иную рабочую точку для переключения, нежели чем при подводном плавании подводной лодки (100).

9. Подводная лодка (100) по п. 8, отличающаяся тем, что первым рабочим режимом является режим, в котором приводной двигатель (2) оптимизирован в отношении своего коэффициента полезного действия и своих акустических шумов.

10. Подводная лодка (100) по п. 8 или 9, отличающаяся тем, что рабочая точка определена пороговой величиной числа оборотов приводного двигателя (2).

11. Подводная лодка (100) по п. 10, отличающаяся тем, что пороговая величина числа оборотов получается из пороговой величины для максимального номинального тока через соответствующее число последовательно включенных фазных обмоток (6, 6') и по характеристике (Ps, Pt) винта.

12. Подводная лодка (100) по п. 8 или 9, отличающаяся тем, что фазные обмотки (6, 6') подсоединены к источнику (17) питания постоянного тока посредством двух полумостов (Wl, W1' и W2, W2 ).

13. Подводная лодка (100) по п. 12, отличающаяся тем, что для последовательного включения соответствующего числа фазных обмоток (6, 6') каждые два полумоста (W1, W1' и W2, W2') их этих фазных обмоток (6, 6') соединены друг с другом соответствующим коммутирующим элементом.

Документы, цитированные в отчете о поиске Патент 2015 года RU2561476C2

WO 2004068694 A1, 12.08.2004
EP 1918192 A2, 07.05.2008
УСТРОЙСТВО для УСТАНОВКИ ЗАПАСНОГО КОЛЕСА НА ШАССИ ТРАНСПОРТНОГО СРЕДСТВА 0
  • Л. Н. Ахметьев, И. М. Смирнов, П. И. Сувориков А. А. Калупин
  • Центральное Конструкторское Бюро Главстроймеханизации
SU334112A1
МОТОРНОЕ ПЛАВСРЕДСТВО С УСТРОЙСТВОМ УПРАВЛЕНИЯ 2006
  • Бауэр Ральф
  • Гриммельсен Юрген
RU2381950C2

RU 2 561 476 C2

Авторы

Эккерт Юрген

Даты

2015-08-27Публикация

2012-03-26Подача