СПОСОБ КОНТРОЛЯ И ДИАГНОСТИКИ ЭЛЕКТРООБОРУДОВАНИЯ ВАГОНОВ-ТЕРМОЦИСТЕРН Российский патент 2015 года по МПК B60S5/00 G01M17/08 G01R31/00 B61D5/00 

Описание патента на изобретение RU2561483C1

Изобретение относится к области технического обслуживания и ремонта подвижного состава железнодорожного транспорта, в частности изобретение относится к безотцепному обслуживанию, контролю, диагностике и ремонту электрооборудования вагонов-термоцистерн для транспортирования расплавленных химических продуктов - серы и др.

Контроль и диагностика электрооборудования вагонов-термоцистерн с термостатированным котлом и электрообогревом для перевозки жидкой серы при техническом обслуживании и ремонте предполагает необходимость оценки состояния разъема управления, проводов цепи управления, управляющих контактов термореле и ручного выключателя разогрева, состояния трех штепсельных разъемов трехфазного питания и подключенных к ним трех независимых групп проводов, предохранителей и трубчатых электрических нагревателей (ТЭН), а также срока очередной калибровки термореле и соответствия параметров подлежащего калибровке термореле. Результаты контроля и диагностики должны записываться. ТЭН в каждой независимой группе разбиты на три подгруппы, включенные по схеме звезды с изолированной (от корпуса цистерны) нейтралью. Каждая подгруппа содержит четыре ТЭН, включенных параллельно. Конструктивно подгруппы выполнены в виде отдельных секций по четыре либо по два ТЭН в каждой из них. В пределах одной секции электропитание подводится от одной фазы относительно общего для всей группы провода нейтрали. Номинальная мощность одного ТЭН составляет 2,5 кВт. Соответственно, мощность подгруппы ТЭН 10 кВт, а мощность группы ТЭН 30 кВт. Суммарная мощность всех групп ТЭН вагона-термоцистерны составляет 90 кВт.

Известен способ [1], [2] контроля и диагностики электрооборудования вагонов-термоцистерн для перевозки жидкой серы, в котором путем измерений с помощью мегомметра сопротивления электрической изоляции элементов в каждой из групп цепей вагона-термоцистерны и на основе сравнения полученных значений с допустимыми пороговыми значениями определяют исправность изоляции электрооборудования вагонов-термоцистерн, затем для исправных по изоляции вагонов-термоцистерн осуществляют диагностику состояния всех ТЭН, проводов и предохранителей каждой из групп и подгрупп методом измерения потребляемых подгруппами токов при номинальном рабочем напряжении электропитания и/или измерения потребляемой мощности для подгрупп, групп и вагона-термоцистерны в целом, при этом также оценивают состояние элементов цепи управления нагревом (разъема и цепи управления, выключателя разогрева и термореле ограничения температуры нагрева вагона-термоцистерны) по соответствию функционирования управления нагревом для различных состояний элементов цепи управления, далее по журналу учета состояния вагонного парка для вагона-термоцистерны проверяют истечение срока очередной периодической калибровки термореле и, в случае истечения, калибровку по температуре срабатывания производят измерением температуры котла вагона-термоцистерны в момент автоматического отключения нагрева, а калибровку термореле по температуре восстановления - измерением температуры в момент автоматического повторного включения нагрева после некоторого остывания котла вагона-термоцистерны, при этом информацию в журнал регистрации результатов технического контроля и диагностики при обслуживании вагонов-термоцистерн заносят вручную и на основе анализа полученных диагностических признаков идентифицируют одно из трех состояний электрооборудования вагона-термоцистерны - исправное, ограниченно работоспособное (допускающее эксплуатацию без ремонта), неисправное (требующее ремонта).

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе для диагностики электрооборудования вагонов-термоцистерн:

используются опасные для персонала уровни контрольных напряжений;

контроль состояния подгрупп ТЭН, предохранителей, проводов и элементов цепи управления осуществляется с использованием дополнительного устройства (диагностического стенда), что увеличивает трудоемкость;

при оснащении участка технического обслуживания вагонов-термоцистерн диагностическими стендами, размещаемыми на стационарных постах контроля, требуется подвод электроснабжения большой мощности;

существует необходимость многократного маневрирования составом из обслуживаемых вагонов-термоцистерн для подачи каждого из них в зону досягаемости подключения кабелей от стационарных пунктов контроля;

при наличии в схеме электрооборудования вагона-термоцистерны неисправностей в виде короткозамкнутых цепей на некоторое время возникает аварийный токовый режим для питающего электрооборудования, а также разъемов и цепей электрооборудования вагона-термоцистерны, что не лучшим способом сказывается на остаточном ресурсе их работы;

ввиду наличия тепловой инерционности и значительного температурного коэффициента сопротивления ТЭН необходимо дополнительное время от 5 до 10 минут на установление номинальных значений токов в подгруппах ТЭН до начала фиксации результатов измерений;

существует необходимость для персонала, производящего диагностику, при оценке количества исправных трубчатых электронагревателей в отдельных подгруппах помнить номинальные контрольные пороги по токам, а также постоянно учитывать поправки на колебания напряжения питающей сети (диапазон допустимых колебаний напряжения обычной промышленной сети составляет до 20%, изменения тока при перегорании одного из параллельно включенных трубчатых электронагревателей подгруппы по цепи ее питания соизмеримо - примерно 25%), вариант контроля по мгновенной мощности потребления требует использования вместо амперметров более дорогостоящих ваттметров, устойчивых к воздействию аварийных режимов коротких замыканий в контролируемых нагрузках;

существует проблема низкой точности и большого времени калибровки термореле в составе вагона-термоцистерны, обусловленные значительной тепловой инерционностью котла термоцистерны и значительными градиентами температур внутри него, а также во внутреннем пространстве между котлом и теплоизолирующей обшивкой;

существует проблема большой трудоемкости и неудобства ручного ведения журнальных записей о состоянии и ремонтах приписного парка вагонов-термоцистерн, а также ручного поиска в этих записях сведений о дате последней калибровки термореле вагона-термоцистерны по номеру вагона.

В основу изобретения положена задача, заключающаяся в создании способа контроля и диагностики электрооборудования вагонов-термоцистерн, лишенного вышеизложенных недостатков, и в котором обеспечивается мобильная комплексная автоматизированная энергосберегающая технология безопасного оперативного контроля, диагностики и регистрации состояния электрооборудования железнодорожного подвижного состава из вагонов-термоцистерн.

Технический результат изобретения состоит в том, что используются безопасные для персонала уровни контрольных напряжений малой мощности, и, как следствие, малые габариты и вес комплекта мобильных переносных приборов и устройств для высокопроизводительного комплексного контроля, диагностики и регистрации состояния электрооборудования вагонов-термоцистерн с автоматическим определением количества неисправных трубчатых электронагревателей для каждой секции в каждой из групп и с автоматической регистрацией результатов контроля и диагностики, а также значительное снижение времени, повышение точности и упрощение калибровки термореле, автоматизация датирования и отслеживания периодичности калибровок термореле, возможность автоматизации статистического анализа состояния и ремонтов приписного парка вагонов-термоцистерн на базе электронным способом ведущихся переносным компьютером контрольно-диагностических записей, возможность оперативно проводить контроль и диагностику состава из вагонов-термоцистерн безотцепным способом вне стационарных постов, значительное сокращение времени использования маневрового состава, многократное снижение потребляемой технологической мощности участком обслуживания вагонов-термоцистерн и, как следствие, более высокая экономическая эффективность.

Время, необходимое для регистрации результатов технического контроля и формирования диагностического паспорта при обслуживании вагонов-термоцистерн новым способом, также существенно сокращается благодаря автоматизации записи результатов измерений, автоматизации анализа полученных диагностических признаков и автоматизации идентификации одного из трех состояний электрооборудования вагона-термоцистерны - исправного, ограниченно работоспособного, неисправного.

Новым в реализуемой посредством мобильного комплекта устройств и приборов технологии обслуживания является отказ от использования мощного подвода промышленной питающей сети и переход на безопасные уровни контрольных напряжений малой мощности, отказ от ведения рукописных журнальных операций и переход на ведение электронных записей параметров электрооборудования обслуживаемых вагонов-термоцистерн, замена операции калибровки термореле в составе вагона-термоцистерны на операцию замены термореле с истекшим сроком калибровки на заранее откалиброванное посредством промышленного калибратора температур, а также упрощение процедуры определения даты последней периодической регламентной калибровки термореле обслуживаемого вагона-термоцистерны по его номеру в электронной базе данных приписного парка.

Указанный технический результат достигается тем, что в известном способе контроля и диагностики электрооборудования вагонов-термоцистерн, в котором путем измерений с помощью мегомметра сопротивления электрической изоляции элементов в каждой из групп цепей вагона-термоцистерны и на основе сравнения полученных значений с допустимыми пороговыми значениями определяют исправность изоляции электрооборудования вагонов-термоцистерн, отличающийся тем, что для контроля и диагностики используют мобильный комплект устройств и приборов с аккумуляторным питанием, состоящий из переносного компьютера и переносного мегаомметра-мультиметра с безопасными уровнями контрольных напряжений, встроенной памятью результатов измерений и портом вывода результатов измерений на переносной компьютер, которым в определенной последовательности кроме сопротивлений изоляции измеряют также сопротивления каждой из подгрупп цепей вагона-термоцистерны, номер диагностируемого вагона-термоцистерны вводят с клавиатуры переносного компьютера, на котором также содержится в электронном виде база данных по калибровке термореле приписного парка вагонов-термоцистерн, по введенному номеру осуществляют анализ истечения срока калибровки термореле и, в случае его истечения, термореле демонтируют и заменяют на другое, заранее откалиброванное на стационарном рабочем месте, оснащенном калибратором температур, для введенного номера вагона-термоцистерны факт замены термореле на калиброванное фиксируют на переносном компьютере, результаты измерений сопротивлений и сопротивлений изоляции подгрупп и групп цепей из памяти мегаомметра-мультиметра также выгружают в электронную базу данных диагностики приписного вагонного парка на переносной компьютер, который на основе сравнения полученных значений с допустимыми пороговыми значениями определяет состояние электрооборудования вагонов-термоцистерн, причем для учета температурных коэффициентов сопротивлений ТЭН при расчете количества исправных ТЭН в подгруппе используют несколько сезонных температурных профилей пороговых значений сопротивлений для вариантов исправности различного количества ТЭН в подгруппе, нужный профиль выбирают в зависимости от нахождения температуры окружающей среды обслуживаемого состава в том или другом диапазоне значений температур, далее все записи базы данных диагностики обслуженных за рабочую смену вагонов-термоцистерн в конце смены выгружают в основной компьютер участка обслуживания, осуществляющий хранение актуальной базы данных и оснащенный средствами резервного копирования, распечатывают в виде диагностического паспорта на стационарном рабочем месте, оснащенном принтером с портом подключения к основному компьютеру, подписывают техническим персоналом, осуществлявшим диагностику, и подшивают в сменный журнал, а при наличии на участке обслуживания нескольких мобильный комплектов, базы данных переносных компьютеров этих комплектов синхронизируют с актуальной базой данных основного компьютера в начале каждой рабочей смены.

Благодаря введению в известный способ совокупности существенных отличительных признаков способ контроля и диагностики электрооборудования вагонов-термоцистерн позволяет производить их безотцепное безопасное обслуживание вне стационарных пунктов контроля без подвода мощного электроснабжения, сократить время контроля, диагностики и регистрации состояния электрооборудования железнодорожного подвижного состава из вагонов-термоцистерн, а периодическую калибровку термореле выполнять на отдельном стационарном рабочем месте со значительно меньшими трудоемкостью и энергопотреблением.

Способ осуществляется следующим образом

1. При обслуживании электрооборудования вагонов-термоцистерн используется мобильный комплект устройств и приборов с аккумуляторным питанием, состоящий из переносного компьютера и переносного мегаомметра-мультиметра с безопасными уровнями контрольных напряжений, встроенной памятью результатов измерений и портом вывода результатов измерений на переносной компьютер, а также подменный фонд откалиброванных посредством калибратора температур термореле;

2. В переносной компьютер, содержащий базу данных обслуживания закрепленного вагонного парка, вносится номер подлежащего обслуживанию вагона-термоцистерны;

3. Проверяется срок предшествовавшей калибровки термореле для этого вагона-термоцистерны и, в случае истечения срока действия предшествовавшей калибровки, реле демонтируется на очередную калибровку, о чем делается отметка в базе данных, и заменяется на другое заранее откалиброванное термореле из подменного фонда, при этом для хранения демонтированных на калибровку термореле используют отдельный маркированный соответствующей надписью контейнер, а для подменного фонда откалиброванных термореле используют другой маркированный иначе контейнер;

4. Переносным мегаомметром-мультиметром с встроенной памятью результатов измерений и портом вывода результатов измерений на переносной компьютер в определенной последовательности со стороны контактов разъемов подключения вагона-термоцистерны производится контроль сопротивлений всех подгрупп и сопротивлений изоляции всех групп цепей электрооборудования вагона-термоцистерны, причем для четвертой группы цепей управления контроль сопротивлений производится для замкнутого и разомкнутого положения выключателя нагрева, а результаты измерений фиксируются в памяти мегаомметра-мультиметра;

6. Выгружают результаты измерений из памяти переносного мегаомметра-мультиметра в базу данных переносного компьютера;

7. Программными средствами аналитики результаты измерений автоматически сравниваются с пороговыми значениями для выбранного температурного профиля;

8. Формируется выходной отчет по состоянию электрооборудования вагона-термоцистерны, идентифицирующий одно из трех состояний электрооборудования вагонов-термоцистерн - исправное, ограниченно работоспособное (допускающее эксплуатацию без ремонта), неисправное (требующее ремонта) с указанием неисправных цепей и количеств отказавших ТЭН для каждой подгруппы и заключением;

9. Произведенные в течение рабочей смены записи в базу данных состояния вагонного парка в конце смены переписываются с переносного компьютера в основной компьютер участка обслуживания, осуществляющий хранение актуальной базы данных и оснащенный средствами резервного копирования и распечатки выходных отчетов по всем диагностированным вагонам;

10. Контейнер с термореле, подлежащими калибровке, в конце смены передается на стационарное рабочее место, оснащенное калибратором температур, где впоследствии производится повторная калибровка термореле, исправные и отрегулированные термореле возвращаются в подменный фонд;

11. При использовании нескольких мобильных комплектов на участке обслуживания, содержание баз данных переносных компьютеров комплектов в начале каждой рабочей смены синхронизируется программными средствами с актуальной базой данных основного компьютера.

В качестве переносного мегаомметра-мультиметра с встроенной памятью результатов измерений и портом вывода результатов измерений на переносной компьютер может быть использован любой из имеющих основную погрешность измерений в пределах 2%, с диапазоном измеряемых сопротивлений изоляции минимум до 1 МОм, имеющий режим безопасного контрольного напряжения изоляции величиной не более 50В, а диапазон измеряемых сопротивлений цепи в пределах как минимум от 1 до 30 Ом. Наиболее подходящим на момент составления заявки на изобретение из имеющих функцию записи в память результатов измерений оказался мегаомметр Е6-32 (память до 10000 результатов измерений с возможностью обмена данными с внешним компьютером через Bluetooth-USB адаптер, свидетельство об утверждении типа средств измерений №50932, межповерочный интервал 2 года).

В качестве переносного компьютера может быть использован любой ноутбук или планшетный компьютер с предустановленной операционной системой, сервисным программным обеспечением из комплекта поставки мегаомметра-мультиметра, программными средствами ведения базы данных обслуживания приписного вагонного парка и программными средствами аналитики, статистической обработки, формирования отчетов по заданным параметрам.

При этом время контроля исправности ТЭН значительно сокращается из-за отсутствия необходимости прогревать секции ТЭН до рабочих температур, а суммарное время замены термореле (составляет не более 5 минут) и последующей ее калибровки на специально оборудованном промышленным калибратором температур стационарном рабочем месте значительно меньше времени, необходимого для прогрева котла вагона-термоцистерны до температуры срабатывания термореле, и, особенно, времени, необходимого для последующего охлаждения котла до температуры восстановления термореле. Мощность сети питания калибратора температур термореле минимум в сто раз ниже мощности системы обогрева котла вагона-термоцистерны, а время калибровки значительно меньше. На прогрев даже пустого котла вагона-термоцистерны до температуры срабатывания термореле (около 180°С) необходимо несколько часов, а на охлаждение до температуры восстановления (около 160°С) - не менее суток, промышленному сухоблочному калибратору температур мощностью менее 1 кВт для соответствующих разогрева и охлаждения термореле требуется время менее получаса.

В качестве калибратора температур для термореле ТР-200 и ТР-200М может быть использован любой сухоблочный калибратор диаметром калибровочного колодца не менее 18 мм, глубиной калибровочного колодца не менее 90 мм, имеющий канал контроля состояния управляющих контактов калибруемых термостатов или термореле и точность воспроизведения температур не хуже 1°С. Наиболее подходящим на момент составления заявки на изобретение из имеющих функцию контроля состояния управляющих контактов калибруемого термореле оказался калибратор температур Pyros 375 итальянской фирмы Guissani (свидетельство об утверждении типа средств измерений №47999, межповерочный интервал 2 года, допустимая погрешность воспроизведения температуры ±0,5°С, максимальная электрическая мощность 650 Вт, диаметр калибровочного колодца 26 мм) с заказной металлической вставкой внутренним диаметром 18,4 мм (при наружном диаметре 25,8 мм).

Эффективность изобретения заключается в улучшении условий труда персонала, сокращении трудоемкости контроля, снижении энергозатрат, автоматизации идентификации состояния вагона-термоцистерны и упрощении процедуры регистрации результатов. Переход к ведению электронной базы данных парка подвижного состава открывает новые возможности по ведению статистической аналитики ремонтов и их прогнозированию, а также оптимизации складских запасов материалов и запасных частей.

Способ был успешно опробован в Астраханском филиале ООО "Газпромтранс", его комплексное внедрение в этом филиале запланировано в третьем квартале 2014 года, а в Оренбургском филиале ООО "Газпромтранс" его внедрение планируется осуществить в 2015 году.

Источники информации

1. Вагон-цистерна для серы модель 15-1482. Техническое описание и инструкция по эксплуатации 1482.00.000 ТО/Производственное объединение «Ждановтяжмаш», 1978.

2. Технологическая инструкция подготовки вагонов-цистерн для перевозки расплавленной серы/ООО «Газпромтранс», 2008.

Похожие патенты RU2561483C1

название год авторы номер документа
МНОГОФУНКЦИОНАЛЬНОЕ УСТРОЙСТВО ПРОВЕРКИ РАБОЧИХ ПАРАМЕТРОВ ЛОПАСТЕЙ ВИНТОВ ВЕРТОЛЕТА 2013
  • Борзунов Александр Петрович
  • Самаркин Виктор Георгиевич
  • Данильчук Игорь Федорович
RU2529451C1
Стенд для проверки функционирования датчиков давления, термопреобразователей сопротивления и преобразователей термоэлектрических 2021
  • Федотов Михаил Владимирович
  • Воронков Владимир Александрович
  • Киреев Владимир Альбертович
  • Моисеева Елена Анатольевна
RU2775620C1
Мобильное устройство контроля реле 8Э123М в нестационарных условиях при периодических испытаниях 2017
  • Черкасов Юрий Николаевич
RU2665326C1
СПОСОБ КОНТРОЛЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ЛОКОМОТИВОВ ПОСТОЯННОГО И ПЕРЕМЕННОГО ТОКА 2013
  • Макаренко Николай Григорьевич
  • Рощупкин Дмитрий Сергеевич
  • Мехедов Владимир Константинович
RU2540048C2
СПОСОБ ОПРЕДЕЛЕНИЯ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК ИЗМЕРИТЕЛЬНОГО КАНАЛА С ИСПОЛЬЗОВАНИЕМ ПРОГРАММНО-ТЕХНИЧЕСКОГО КОМПЛЕКСА 2022
  • Калашников Александр Александрович
RU2814090C1
ШИРОКОДИАПАЗОННЫЙ КАЛИБРАТОР, УПРАВЛЯЕМЫЙ ДИФФЕРЕНЦИАЛЬНЫМ ВОЛЬТМЕТРОМ 2006
  • Михайлов Геннадий Харенович
RU2333505C1
СИСТЕМА МОНИТОРИНГА ЭЛЕКТРОПОЕЗДОВ 2012
  • Костюков Владимир Николаевич
  • Костюков Алексей Владимирович
  • Сизов Сергей Владимирович
  • Аристов Владислав Павлович
RU2550240C2
Блок измерительный комплекса автономной проверки электрооборудования изделий 2022
  • Бабкин Валерий Николаевич
  • Тихий Олег Викторович
  • Чуйков Денис Александрович
RU2797749C1
СПОСОБ ВОЙСКОВОГО РЕМОНТА СЛОЖНЫХ СИСТЕМ ВООРУЖЕНИЯ И ВОЕННОЙ ТЕХНИКИ НА МЕСТЕ ДИСЛОКАЦИИ 2010
  • Страхов Алексей Федорович
  • Комаров Михаил Вячеславович
  • Фомин Александр Михайлович
  • Белова Екатерина Львовна
RU2475380C2
СПОСОБ ОПЕРАТИВНОГО ВОЙСКОВОГО РЕМОНТА СЛОЖНЫХ СИСТЕМ ВООРУЖЕНИЯ И ВОЕННОЙ ТЕХНИКИ НА МЕСТЕ ДИСЛОКАЦИИ С ПРИМЕНЕНИЕМ КВАДРОКОПТЕРА 2018
  • Верба Владимир Степанович
  • Силкин Александр Тихонович
  • Воробьев Николай Васильевич
  • Грязнов Владимир Аркадьевич
RU2716516C1

Реферат патента 2015 года СПОСОБ КОНТРОЛЯ И ДИАГНОСТИКИ ЭЛЕКТРООБОРУДОВАНИЯ ВАГОНОВ-ТЕРМОЦИСТЕРН

Изобретение относится к области технического обслуживания и ремонта подвижного состава железнодорожного транспорта. Способ заключается в том, что с помощью мегомметра измеряют сопротивления электрической изоляции элементов в каждой из групп цепей вагона-термоцистерны. Сравнивают полученные значения с допустимыми пороговыми значениями и определяют исправность изоляции. Используют мобильный комплект устройств, которым измеряют сопротивления каждой из подгрупп цепей вагона-термоцистерны. Номер вагона вводят с клавиатуры переносного компьютера, на котором также содержится база данных по калибровке термореле. В случае истечения срока калибровки термореле заменяют на откалиброванное заранее, а факт замены фиксируют на компьютере. Результаты измерений выгружают в электронную базу данных диагностики приписного вагонного парка на компьютер, который на основе сравнения с пороговыми значениями определяет состояние электрооборудования. Для учета температурных коэффициентов сопротивлений ТЭН при расчете исправных ТЭН используют несколько температурных профилей пороговых значений сопротивлений. Все записи базы данных диагностики обслуженных за рабочую смену вагонов-термоцистерн выгружают в основной компьютер участка обслуживания. Технический результат изобретения заключается в повышении качества контроля и диагностики электрооборудования вагонов-термоцистерн.

Формула изобретения RU 2 561 483 C1

Способ контроля и диагностики электрооборудования вагонов-термоцистерн, в котором путем измерений с помощью мегомметра сопротивления электрической изоляции элементов в каждой из групп цепей вагона-термоцистерны и на основе сравнения полученных значений с допустимыми пороговыми значениями определяют исправность изоляции электрооборудования вагонов-термоцистерн, отличающийся тем, что для контроля и диагностики используют мобильный комплект устройств и приборов с аккумуляторным питанием, состоящий из переносного компьютера и переносного мегаомметра-мультиметра с безопасными уровнями контрольных напряжений, встроенной памятью результатов измерений и портом вывода результатов измерений на переносной компьютер, которым в определенной последовательности кроме сопротивлений изоляции измеряют также сопротивления каждой из подгрупп цепей вагона-термоцистерны, номер диагностируемого вагона-термоцистерны вводят с клавиатуры переносного компьютера, на котором также содержится в электронном виде база данных по калибровке термореле приписного парка вагонов-термоцистерн, по введенному номеру осуществляют анализ истечения срока калибровки термореле и, в случае его истечения, термореле демонтируют и заменяют на другое, заранее откалиброванное на стационарном рабочем месте, оснащенном калибратором температур, для введенного номера вагона-термоцистерны факт замены термореле на калиброванное фиксируют на переносном компьютере, результаты измерений сопротивлений и сопротивлений изоляции подгрупп и групп цепей из памяти мегаомметра-мультиметра также выгружают в электронную базу данных диагностики приписного вагонного парка на переносной компьютер, который на основе сравнения полученных значений с допустимыми пороговыми значениями определяет состояние электрооборудования вагонов-термоцистерн, причем для учета температурных коэффициентов сопротивлений ТЭН при расчете количества исправных ТЭН в подгруппе используют несколько сезонных температурных профилей пороговых значений сопротивлений для вариантов исправности различного количества ТЭН в подгруппе, нужный профиль выбирают в зависимости от нахождения температуры окружающей среды обслуживаемого состава в том или другом диапазоне значений температур, далее все записи базы данных диагностики обслуженных за рабочую смену вагонов-термоцистерн в конце смены выгружают в основной компьютер участка обслуживания, осуществляющий хранение актуальной базы данных и оснащенный средствами резервного копирования, распечатывают в виде диагностического паспорта на стационарном рабочем месте, оснащенном принтером с портом подключения к основному компьютеру, подписывают техническим персоналом, осуществлявшим диагностику, и подшивают в сменный журнал, а при наличии на участке обслуживания нескольких мобильный комплектов, базы данных переносных компьютеров этих комплектов синхронизируют с актуальной базой данных основного компьютера в начале каждой рабочей смены.

Документы, цитированные в отчете о поиске Патент 2015 года RU2561483C1

СИСТЕМА КОМПЛЕКСНОЙ ДИАГНОСТИКИ ЭЛЕКТРОСЕКЦИЙ МОТОР-ВАГОННОГО ПОДВИЖНОГО СОСТАВА 2008
  • Костюков Владимир Николаевич
  • Костюков Алексей Владимирович
  • Стариков Вадим Александрович
  • Лагаев Александр Александрович
  • Казарин Денис Викторович
RU2386943C1
Устройство для откачки, цоколевки, прокалки аквадага, выжигания нитроклетчатки и тренировки электронно-лучевых трубок 1959
  • Бродский С.И.
  • Клюев П.Г.
  • Ковалев А.А.
  • Крышик Э.Ф.
  • Хаскович Л.Л.
  • Юношева А.В.
SU133931A1
Способ использования льда для охлаждения 1951
  • Бобков В.А.
SU98583A1
CN 102768120 A, 07.11.2012

RU 2 561 483 C1

Авторы

Никитин Александр Владимирович

Сапрыкин Виталий Викторович

Даты

2015-08-27Публикация

2014-07-08Подача