Изобретение относится к области оптики, а именно к острой фокусировке электромагнитного излучения, и может быть использовано для высокоразрешающей оптической записи и сканирующей оптической микроскопии.
Известен дифракционный оптический элемент для формирования светового пятна субволнового размера при плоской поляризации падающего излучения (Патент RU №2458372, МПК G02B 27/42, 27/58) на основе круговой дифракционной решетки с периодом, близким к длине волны, выполненной из двух секций.
Такой дифракционный оптический элемент по своей сути является аксиконом и обеспечивает формирование светового пятна субволнового размера на оптической оси. Однако дальнейшее уменьшение диаметра сформированного светового пятна путем уменьшения периода дифракционной решетки невозможно, а кроме того, из-за линейной поляризации освещающего излучения по обеим сторонам от сформированного светового пятна наблюдаются побочные максимумы, образованные поперечными компонентами сфокусированного излучения.
Наиболее близким по сущности к заявляемому изобретению является высокоапертурный рефракционный аксикон, освещаемый излучением с радиальной поляризацией (V.V. Kotlyar, A.A. Kovalev, and S.S. Stafeev, ″Sharp focus area of radially-polarized gaussian beam propagation through an axicon″, Progress In Electromagnetics Research C, Vol. 5, 2008, p. 35-43), представляющий собой конический элемент из преломляющего материала с углом при вершине, обеспечивающим полное внутреннее отражение излучения с радиальной поляризацией, проходящего в сторону вершины конуса параллельно его оси. Такой оптический элемент обеспечивает формирование светового пятна субволнового размера в непосредственной близости (на расстоянии не более половины длины волны) от вершины конуса.
Недостатком данного оптического элемента является то, что размер светового пятна достигает минимума, а интенсивность в пятне максимума при определенных значениях числовой апертуры аксикона (авторы указывают изменение высоты конуса, что эквивалентно изменению числовой апертуры) и при дальнейшем увеличении числовой апертуры световое пятно снова начинает увеличиваться.
Технический результат изобретения - уменьшение диаметра светового пятна при фокусировке электромагнитного излучения.
Технический результат достигается тем, что в известной оптической системе для формирования светового пятна, содержащей высокоапертурный рефракционный аксикон, освещаемый излучением с радиальной поляризацией и представляющий собой конический элемент из преломляющего материала с углом при вершине, обеспечивающим полное внутреннее отражение излучения с радиальной поляризацией, проходящего в сторону вершины конуса параллельно его оси, особенностью является то, что рефракционный аксикон дополнительно содержит металлическую наноразмерную сферу, прикрепленную к вершине его конуса.
На чертеже представлен общий вид оптической системы в разрезе, где показаны: рефракционный аксикон 1, наносфера 2.
Рефракционный аксикон 1 изготовлен из преломляющего материала и имеет угол при вершине, обеспечивающий полное внутреннее отражение излучения, падающего со стороны основания (показано стрелками на фигуре). На вершине рефракционного аксикона 1 прикреплена наноразмерная сфера - наносфера 2, изготовленная из металла.
Принцип действия оптической системы основан на свойстве электромагнитного излучения концентрироваться в непосредственной близости от поверхностей с малыми радиусами кривизны. Излучение с радиальной поляризацией, проходящее через рефракционный аксикон, образует максимум интенсивности в непосредственной близости от вершины рефракционного аксикона. Продольная компонента электромагнитного поля для высокоапертурных оптических элементов гораздо мощнее и больше локализована на оптической оси, чем поперечные компоненты электромагнитного поля. Таким образом, излучение с радиальной поляризацией образует радиально симметричный максимум интенсивности вблизи вершины рефракционного аксикона, в котором превалирует продольная компонента. Металлическая преграда в виде наноразмерной сферы (наносферы) способствует концентрации излучения по обе стороны от наносферы перпендикулярно к направлению распространения излучения. Поскольку направление распространения продольной компоненты перпендикулярно оси конуса, максимум интенсивности образуется вблизи поверхности наносферы на продолжении оси конуса. Это приводит к уменьшению диаметра центрального пятна, сформированного оптической системой, до размеров, близких к размеру наносферы. Современные нанотехнологии, ориентированные на изготовление ближнепольных безапертурных зондов, позволяют прикреплять на вершину конуса наночастицы различных размеров, вплоть до размера в несколько молекул вещества, например, http://www.htmdt-tips.com/products/group/cp, где описаны консоли субмикронных сфер, присоединенных к самому концу иглы из кремния.
Работает оптическая система следующим образом: оптическое излучение с радиальной поляризацией освещает основание рефракционного аксикона 1 и проходит далее к его поверхности. Из-за полного внутреннего отражения излучение выходит наружу только в районе вершины конуса рефракционного аксикона 1, где суммируется таким образом, что происходит усиление продольной компоненты электромагнитного поля и ослабление поперечных компонент. Продольная компонента, распространяясь поперек оси конуса рефракционного аксикона 1, как бы огибает наносферу 2 и образует максимум вблизи ее поверхности. Максимум образуется только в месте расположения наносферы 2 и поэтому имеет размер, близкий к размеру наносферы 2.
Предлагаемое техническое решение обеспечивает уменьшение размера светового пятна на оптической оси до размеров, определяемых размерами металлической наносферы.
название | год | авторы | номер документа |
---|---|---|---|
Рефракционная метаповерхность для формирования и фокусировки азимутально поляризованного лазерного пучка | 2023 |
|
RU2826511C1 |
ДИФРАКЦИОННЫЙ ОПТИЧЕСКИЙ ЭЛЕМЕНТ ДЛЯ ФОРМИРОВАНИЯ НЕРАСХОДЯЩЕГОСЯ СВЕТОВОГО ПЯТНА ПРИ ПЛОСКОЙ ПОЛЯРИЗАЦИИ ПАДАЮЩЕГО ИЗЛУЧЕНИЯ | 2010 |
|
RU2458372C1 |
Моноблочный преобразователь светового пучка с круговой поляризацией в пучок с азимутальной поляризацией | 2023 |
|
RU2819107C1 |
Зонная пластинка с субволновым разрешением | 2021 |
|
RU2773808C1 |
ОТРАЖАТЕЛЬНЫЙ РЕФЛЕКТОР, ВОЗВРАЩАЮЩИЙ ПАДАЮЩЕЕ НА НЕГО ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЯ ОПТИЧЕСКОГО ДИАПАЗОНА В ОБРАТНОМ НАПРАВЛЕНИИ | 2024 |
|
RU2817617C1 |
Управляемое акустическое фокусирующее устройство | 2020 |
|
RU2743192C1 |
Способ формирования изображения объектов с субдифракционным разрешением и высоким контрастом | 2021 |
|
RU2777709C1 |
Иммерсионная зонная пластинка с субволновым разрешением | 2021 |
|
RU2763864C1 |
Способ фокусировки электромагнитного излучения | 2022 |
|
RU2790963C1 |
Способ неконтактного подрыва и неконтактный датчик цели | 2021 |
|
RU2771003C1 |
Изобретение относится к области оптики, а именно к острой фокусировке электромагнитного излучения, и может быть использовано для высокоразрешающей оптической записи и сканирующей оптической микроскопии. Технический результат изобретения - уменьшение диаметра светового пятна при фокусировке электромагнитного излучения. Оптическая система представляет собой конический элемент из преломляющего материала с углом при вершине, обеспечивающим полное внутреннее отражение излучения с радиальной поляризацией, проходящего в сторону вершины конуса параллельно его оси. К вершине конуса прикреплена металлическая наноразмерная сфера. Уменьшение размера светового пятна на оптической оси до субволновых размеров осуществляется за счет концентрации электромагнитного излучения в непосредственной близости от поверхностей с малыми радиусами кривизны и определяется размерами металлической наносферы. 1 ил.
Оптическая система для формирования светового пятна субволнового размера, содержащая высокоапертурный рефракционный аксикон, освещаемый излучением с радиальной поляризацией и представляющий собой конический элемент из преломляющего материала с углом при вершине, обеспечивающим полное внутреннее отражение излучения с радиальной поляризацией, проходящего в сторону вершины конуса параллельно его оси, отличающаяся тем, что рефракционный аксикон дополнительно содержит металлическую наноразмерную сферу, прикрепленную к вершине его конуса.
V | |||
V | |||
Kotlyar, A | |||
A | |||
Kovalev, S.S | |||
Stafeev "Sharp focus area of radially-polarized gaussian beam propagation through an axicon," Progress In Electromagnetics Research C, Vol | |||
Кипятильник для воды | 1921 |
|
SU5A1 |
CN 202794707 U, 13.03.2013 | |||
ЛАЗЕРНЫЙ ИЗМЕРИТЕЛЬ НЕПРЯМОЛИНЕЙНОСТИ | 2010 |
|
RU2457434C2 |
WO 2004102230 A1, 25.11.2004 |
Авторы
Даты
2015-09-10—Публикация
2014-03-20—Подача