СПОСОБ ЗАЩИТЫ МАЛОРАЗМЕРНОГО ПОДВИЖНОГО ОБЪЕКТА ОТ ВЫСОКОТОЧНОГО ОРУЖИЯ С ЛАЗЕРНЫМ НАВЕДЕНИЕМ Российский патент 2015 года по МПК F41H11/02 

Описание патента на изобретение RU2563472C1

Изобретение относится к области радиоэлектронной борьбы, в частности к способам защиты наземных малоразмерных подвижных военных объектов от высокоточного оружия (ВТО) с лазерным наведением, и может быть использовано при разработке нового комплекса индивидуальной защиты объектов бронетанковой, автомобильной и специальной техники.

Известен наиболее близкий по технической сущности и достигаемому положительному эффекту способ защиты этих наземных объектов от ВТО с лазерным наведением на основе создания ложной цели помеховым лазерным лучом (патент на изобретение RU №2401411, «Способ защиты группового объекта от высокоточного оружия с лазерной системой наведения (варианты)», опуб. 10.10.2010 г.).

Этот способ защиты группового объекта от авиационного ВТО с лазерным наведением включает обнаружение излучения подсвета и формирование расположенной в безопасном месте ложной цели лазерным лучом с параметрами генерации, аналогичными параметрам генерации лазерного луча подсвета, но большим по интенсивности излучения.

Недостатком способа является низкая эффективность защиты группового объекта от ВТО с помехозащищенным лазерным наведением, что обусловлено большой потерей времени на определение параметров генерации лазерного луча подсвета с момента его обнаружения при периодическом кодировании, либо невозможностью формирования лазерной ложной цели из-за отсутствия параметров генерации лазерного луча при непериодическом кодировании.

Задачей изобретения является повышение эффективности защиты малоразмерных подвижных наземных военных объектов от всей номенклатуры ВТО с лазерным наведением за счет постоянного реагирования на каждый импульс подсвета помеховым импульсом.

Указанный технический результат достигается тем, что в способе защиты малоразмерного подвижного объекта от ВТО с лазерным наведением формирование лазерной ложной цели на подстилающей поверхности в наиболее безопасном направлении осуществляется путем генерации импульсов помехового лазерного луча, задержанных относительно импульсов подсвета на время, где D - дальность применения ВТО; c - скорость света; V - скорость сближения ВТО с малоразмерным подвижным наземным объектом.

Сущность изобретения поясняет фиг. 1, где приведены примеры временных диаграмм процессов (эпюры напряжений, импульсов):

а - генерации импульсов излучения подсвета;

б - генерации импульсов помехового излучения известным способом с учетом потери времени на определение параметров генерации лазерного луча подсвета;

в - формирования импульсов задержки;

г - генерации импульсов помехового излучения предлагаемым способом.

На фиг. 1 обозначено: Umc - амплитуда импульсов излучения подсвета; Umi - амплитуда импульсов помехового излучения известным способом; Ump - амплитуда импульсов помехового излучения предлагаемым способом; t12 - временной интервал между первым и вторым импульсами излучения внутри последовательности; t23 - временной интервал между вторым и третьим импульсами излучения внутри последовательности; t34 - временной интервал между третьим и четвертым импульсами излучения внутри последовательности; t4…n - временной интервал между четвертым и n-м импульсами излучения внутри последовательности; tn1 - временной интервал между n-м импульсом излучения первой последовательности и первым импульсом излучения второй последовательности; Δt - временной интервал кодовой последовательности; Δp - требуемый временной интервал на определение параметров генерации лазерного луча подсвета для формирования импульсов помехового излучения; τ0 - требуемая временная задержка помехового импульса относительно импульса подсвета. Генерация импульсов излучения подсвета (фиг. 1,а) согласно запрограммированному алгоритму в разведывательно-прицельной системе обеспечивает работу лазерной системы наведения ВТО в режиме автосопровождения за целью. Известный способ противодействия данному оружию сводится к необходимости восстановления кодовой последовательности импульсов излучения подсвета Δp для формирования помеховым лазерным лучом ложной цели с аналогичными параметрами генерации (фиг. 1,б). Потеря времени на оценку параметров генерации лазерного луча подсвета Δp с момента его обнаружения, которая определяется суммой времени между обнаруженными импульсами излучения подсвета в первой кодовой последовательности t12, t23, t34, t4…n, tn и временем, затраченным на сравнение их с импульсами второй (третьей и т.д. до совпадения структуры) последовательности Δt, может привести к поражению защищаемого объекта в связи с тенденциями подсвета цели противником за несколько секунд до подлета боеприпаса для скрытности функционирования лазерных систем наведения.

Предлагаемый способ защиты наземных малоразмерных подвижных военных объектов за счет реализации постоянной привязки помехового импульса к зондирующему импульсу подсвета на минимальный достаточный временной сдвиг τ0 (фиг. 1,в) позволяет по сравнению с известным способом осуществить гарантированный направленный увод ВТО на сформированную лазерную ложную цель с меньшей интенсивностью помехового излучения (соизмеримой интенсивности излучения подсвета) и практически одновременно с момента обнаружения первого импульса излучения подсвета (потеря времени на оценку параметров генерации лазерного луча подсвета Δp равна времени задержки τ0 (фиг. 1г)).

Изобретение может быть реализовано, например, с помощью устройства, структурная схема которого представлена на фиг. 2, где обозначено: 1 - датчик лазерного облучения; 2 - линия задержки сигнала с фиксированной временной задержкой τ0; 3 - генератор помеховых импульсов лазерного излучения.

Датчик лазерного облучения 1 предназначен для обнаружения импульсов лазерного излучения, регистрации их интенсивности и определения направления подсвета защищаемого объекта, а также формирования управляющего сигнала по моменту обнаружения каждого импульса подсвета. В качестве такого датчика может быть использован, например, индикатор лазерного излучения ТШУ 2-1, разработанный ОАО «ВНИИ Транспортного машиностроения» (г. Санкт-Петербург) [1]. Линия задержки 2 предназначена для временной задержки управляющего сигнала с выхода датчика лазерного облучения на время τ0. Генератор помеховых импульсов лазерного излучения 3 предназначен для формирования по управляющему сигналу лазерной ложной цели путем подсвета подстилающей поверхности в наиболее безопасном направлении импульсами лазерного луча. Представленные элементы устройства могут быть реализованы с использованием существующих радиотехнических устройств.

Заявленное устройство работает следующим образом: зондирование защищаемого объекта лазерным лучом подсвета фиксируется датчиком лазерного облучения 1, сигнал с выхода которого в виде последовательности низкочастотных импульсов поступает через линию задержки 2, обеспечивающую постоянную привязку помехового импульса к зондирующему импульсу подсвета, на вход генератора помеховых импульсов 3, создающего соответствующее излучение с целью формирования лазерной ложной цели.

Достоинствами данного устройства являются его способности к полной автоматизации процесса постановки помех и осуществлению оптико-электронного подавления в течение длительного времени, так как представляет собой нерасходуемое средство создания помех.

Таким образом, предложенный способ защиты малоразмерного подвижного объекта от ВТО с лазерным наведением позволяет реализовать устройство защиты наземных объектов с минимальным временем реагирования помеховых импульсов на импульсы излучения подсвета и меньшей интенсивностью помехового излучения для гарантированного противодействия данному ВТО.

Литература

1. Старченко А.Н. Особенности работы и построения индикаторов излучения командно-лучевых систем наведения ВТО // Актуальные проблемы защиты и безопасности (прил. к журналу «Известия РАРАН»), 2006, Т. 3. - С. 123-127.

Похожие патенты RU2563472C1

название год авторы номер документа
СПОСОБ ЗАЩИТЫ ОБЪЕКТА ОТ ВЫСОКОТОЧНОГО ОРУЖИЯ С ЛАЗЕРНЫМ НАВЕДЕНИЕМ 2024
  • Левшин Евгений Анатольевич
  • Беляев Виктор Вячеславович
  • Миндияров Денис Ваисович
  • Баландович Александр Александрович
  • Марчуков Иван Анатольевич
  • Хакимов Тимерхан Мусагитович
RU2822806C1
АДАПТИВНЫЙ СПОСОБ ЗАЩИТЫ ОБЪЕКТА ОТ УПРАВЛЯЕМОЙ ПО ЛАЗЕРНОМУ ЛУЧУ РАКЕТЫ 2014
  • Утемов Сергей Владимирович
  • Рудый Сергей Даниилович
RU2553407C1
СПОСОБ ЗАЩИТЫ ОБЪЕКТА ОТ УПРАВЛЯЕМЫХ РАКЕТ 2006
  • Утемов Сергей Владимирович
  • Потапов Валерий Викторович
RU2320949C2
УСТРОЙСТВО ЗАЩИТЫ ОТ САМОНАВОДЯЩИХСЯ СУББОЕПРИПАСОВ 2019
  • Корнилов Валентин Иванович
  • Пантюхина Наталья Дмитриевна
RU2704549C1
СИСТЕМА ЗАЩИТЫ ПОДВИЖНЫХ НАЗЕМНЫХ ОБЪЕКТОВ ОТ САМОНАВОДЯЩИХСЯ И САМОПРИЦЕЛИВАЮЩИХСЯ ВЫСОКОТОЧНЫХ БОЕПРИПАСОВ НА МАРШЕ 2021
  • Репин Дмитрий Николаевич
  • Бирюков Сергей Александрович
RU2751260C1
Способ лазерной защиты воздушного судна 2023
  • Астраускас Йонас Ионо
  • Конради Дмитрий Сергеевич
  • Ведерников Максим Андреевич
RU2805094C1
СПОСОБ ПОВЫШЕНИЯ ПОМЕХОЗАЩИЩЕННОСТИ УПРАВЛЯЕМОГО БОЕПРИПАСА 2019
  • Глушков Александр Николаевич
  • Кулешов Павел Евгеньевич
  • Марченко Александр Васильевич
RU2707426C1
СПОСОБ ЗАЩИТЫ ГРУППОВОГО ОБЪЕКТА ОТ ВЫСОКОТОЧНОГО ОРУЖИЯ С ЛАЗЕРНОЙ СИСТЕМОЙ НАВЕДЕНИЯ (ВАРИАНТЫ) 2008
  • Шлома Лилия Владимировна
RU2401411C2
УСТРОЙСТВО ЗАЩИТЫ БРОНИРОВАННОЙ ТЕХНИКИ НА МАРШЕ ОТ ВОЗДЕЙСТВИЯ КАССЕТНЫХ БОЕВЫХ ЭЛЕМЕНТОВ С МНОГОКАНАЛЬНЫМИ ДАТЧИКАМИ ЦЕЛЕЙ 2016
  • Гуменюк Геннадий Андреевич
  • Евдокимов Вячеслав Иванович
  • Корнилов Валентин Иванович
  • Мартышин Владимир Иванович
  • Степанов Виктор Владимирович
RU2651788C2
Способ защиты объектов от оптико-электронных систем наведения 2015
  • Архипов Владимир Павлович
  • Камруков Александр Семенович
  • Козлов Николай Павлович
  • Новоселов Иван Евгеньевич
  • Семенов Кирилл Андреевич
  • Трофимов Александр Вячеславович
  • Яловик Михаил Степанович
RU2619373C1

Иллюстрации к изобретению RU 2 563 472 C1

Реферат патента 2015 года СПОСОБ ЗАЩИТЫ МАЛОРАЗМЕРНОГО ПОДВИЖНОГО ОБЪЕКТА ОТ ВЫСОКОТОЧНОГО ОРУЖИЯ С ЛАЗЕРНЫМ НАВЕДЕНИЕМ

Изобретение относится к области радиоэлектронной борьбы, а именно к способам защиты наземных малоразмерных подвижных объектов от высокоточного оружия с лазерным наведением. Способ защиты малоразмерного подвижного объекта включает обнаружение импульсов лазерного излучения, регистрацию их интенсивности, определения направления подсвета защищаемого объекта, выбор места формирования лазерной ложной цели и излучение помеховых импульсов в наиболее безопасном направлении. Лазерная ложная цель формируется путем подсвета подстилающей поверхности помеховыми импульсами лазерного луча, задержанными относительно импульсов подсвета на минимально достаточное время для гарантированного направленного увода атакующего высокоточного оружия. Технический результат заключается в повышении эффективности защиты малоразмерных подвижных объектов от всей номенклатуры высокоточного оружия с лазерным наведением. 2 ил.

Формула изобретения RU 2 563 472 C1

Способ защиты малоразмерного подвижного объекта от высокоточного оружия с лазерным наведением, основанный на обнаружении излучения подсвета и формировании лазерной ложной цели на подстилающей поверхности в наиболее безопасном направлении, отличающийся тем, что лазерную ложную цель формируют импульсами лазерного луча, задержанными относительно импульсов подсвета на время , где D - дальность применения высокоточного оружия; c - скорость света; V - скорость сближения высокоточного оружия с малоразмерным подвижным наземным объектом.

Документы, цитированные в отчете о поиске Патент 2015 года RU2563472C1

СПОСОБ ЗАЩИТЫ ГРУППОВОГО ОБЪЕКТА ОТ ВЫСОКОТОЧНОГО ОРУЖИЯ С ЛАЗЕРНОЙ СИСТЕМОЙ НАВЕДЕНИЯ (ВАРИАНТЫ) 2008
  • Шлома Лилия Владимировна
RU2401411C2
Способ ковки, штамповки длинных изделий и калибровки прутков 1948
  • Чичерин А.П.
SU91421A2
СПОСОБ ЗАЩИТЫ ОБЪЕКТА ОТ УПРАВЛЯЕМЫХ РАКЕТ 2008
  • Гречишников Евгений Владимирович
  • Комолов Дмитрий Викторович
RU2390721C1
WO 2005056384 A2, 23.06.2005

RU 2 563 472 C1

Авторы

Левшин Евгений Анатольевич

Онуфриенко Валерий Васильевич

Рехвиашвили Владимир Наполеонович

Глухов Вадим Сергеевич

Павлов Павел Владимирович

Непомилуев Андрей Юрьевич

Коровин Роман Алесеевич

Даты

2015-09-20Публикация

2014-05-12Подача