СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ПРИБОРА СВЧ Российский патент 2015 года по МПК G01R27/00 

Описание патента на изобретение RU2566647C1

Изобретение относится к электронной технике, а именно к способам определения параметров прибора СВЧ, и может быть применено при конструировании широкого класса приборов СВЧ - электронный прибор, полупроводниковый прибор, электровакуумный прибор, электродинамическая система.

Известен способ определения параметров прибора СВЧ, включающий

измерение в n точках рабочей полосы частот его комплексных параметров рассеяния (S-параметров),

моделирование его в рабочей полосе частот в виде эквивалентной схемы, содержащей активные и реактивные элементы, каждый из которых описывают соответствующим параметром, не зависящим от частоты,

определение самих параметров посредством одной математической процедуры [1] - прототип.

Недостатки данного способа заключаются:

в необходимости электронно-вычислительной машины (ЭВМ) большой мощности,

в выполнении сложной многопараметрической, многоцелевой математической процедуры оптимизации с большим числом локальных минимумов, часто не позволяющих приблизиться к глобальному минимуму, при этом необходимо наличие упомянутой ЭВМ,

в необходимости определения, с целью лучшего приближения к глобальному минимуму, начальных значений параметров прибора СВЧ, причем по возможности максимально приближенных к глобальному минимуму.

И, как следствие этого, - значительная сложность способа и низкая точность определения параметров прибора СВЧ.

Техническим результатом заявленного способа определения параметров прибора СВЧ является существенное упрощение способа и повышение точности определения.

Указанный технический результат достигается заявленным способом определения параметров прибора СВЧ, включающим измерение в n точках рабочей полосы частот его комплексных параметров рассеяния, моделирование его в рабочей полосе частот в виде эквивалентной схемы, содержащей активные и реактивные элементы, каждый из которых описывают соответствующим параметром, не зависящим от частоты, определение собственно параметров посредством математической процедуры.

В котором

эквивалентную схему прибора СВЧ представляют в виде Т-образного соединения трех комплексных сопротивлений

Z1(fk)=R1k+j×X1k,

Z2(fk)=R2k+j×X2k,

Z3(fk)=R3k+j×X3k,

где

R1k, R2k, R3k - активные составляющие трех комплексных сопротивлений соответственно,

X1k, X2k, X3k - реактивные составляющие трех комплексных сопротивлений соответственно,

,

при этом комплексное сопротивление Z3 включают параллельно, а комплексные сопротивления Z1 и Z2 включают последовательно входу и выходу прибора СВЧ слева и справа относительно комплексного сопротивления Z3 соответственно,

каждое из трех комплексных сопротивлений представляют последовательным соединением активного элемента - сопротивления, которое описывают параметром Ri, и двух реактивных элементов - индуктивности, которую описывают параметром Li, и емкости, которую описывают параметром Ci,

где

i равно 1, 2, 3, что соответствует трем комплексным сопротивлениям,

а определение собственно параметров осуществляют посредством двух математических процедур, при этом в первой - определяют три комплексных сопротивления в n точках рабочей полосы частот из математических формул соответственно:

,

,

,

где

S11(fk), S21(fk), S22(fk) - комплексные параметры рассеяния прибора СВЧ, измеренные в n точках рабочей полосы частот,

Z0 - сопротивление на входе и выходе прибора СВЧ,

k равно 1, 2, 3…n,

во второй определяют собственно параметры прибора СВЧ Ri, Li и Ci из математических формул соответственно:

,

,

,

где

ωk=2×π×fk,

π=3,14156592.

Прибором СВЧ может быть, например, электронный прибор, полупроводниковый прибор, электровакуумный прибор, электродинамическая система.

Раскрытие сущности заявленного изобретения.

Совокупность существенных признаков заявленного способа определения параметров прибора СВЧ, а именно когда:

эквивалентную схему прибора СВЧ представляют в виде Т-образного соединения трех комплексных сопротивлений

Z1(fk)=R1k+j×X1k,

Z2(fk)=R2k+j×X2k,

Z3(fk)=R3k+j×X3k,

при этом комплексное сопротивление Z3 включают параллельно, а комплексные сопротивления Z1 и Z2 включают последовательно входу и выходу прибора СВЧ слева и справа относительно комплексного сопротивления Z3 соответственно,

каждое из трех комплексных сопротивлений представляют последовательным соединением активного элемента - сопротивления, которое описывают параметром Ri, и двух реактивных элементов - индуктивности, которую описывают параметром Li, и емкости, которую описывают параметром Ci,

а определение собственно параметров осуществляют посредством двух математических процедур,

при этом в первой определяют три комплексных сопротивления в n точках рабочей полосы частот из математических формул соответственно:

,

,

,

во второй определяют собственно параметры прибора СВЧ Ri, Li и Ci из математических формул соответственно:

,

,

.

Это обеспечит исключение:

во-первых, сложной многопараметрической, многоцелевой математической процедуры оптимизации с большим числом локальных минимумов, часто не позволяющих приблизиться к глобальному минимуму,

во-вторых, необходимости определения начальных значений параметров прибора СВЧ, причем по возможности максимально приближенных к глобальному минимуму.

в-третьих, ЭВМ большой мощности.

И, как следствие этого, - упрощение способа и повышение точности определения параметров прибора СВЧ.

Раскрытие сущности изобретения поясняется следующим экспериментальным и математическим анализом.

Поскольку измеренные S-параметры имеют разброс, то и составляющие комплексных сопротивлений определяются с некоторой ошибкой.

Частотная зависимость реактивной составляющей комплексного сопротивления при последовательном соединении двух реактивных элементов - индуктивности, которая описывается параметром Li, и емкости, которая описывается параметром Ci, описывается математической формулой

.

Оптимальные значения Li и Ci определяются с помощью метода наименьших квадратов, при котором сумма Fi, равная

,

достигает минимального значения.

Приравнивая производные суммы Fi по параметрам Li и Ci к нулю, получаем систему двух уравнений

,

.

Решение этой системы имеет вид:

,

,

Сопротивление, которое описывается параметром Ri, определяют из математической формулы:

.

Итак, заявленный способ определения параметров прибора СВЧ обеспечит существенное упрощение способа и повышение точности определения.

Пример реализации заявленного способа определения параметров прибора СВЧ.

Пример реализации рассмотрен для определения параметров полупроводникового прибора СВЧ - полевого транзистора с барьером Шотки.

Полевой транзистор с барьером Шотки имеет следующие геометрические, технологические и электрические параметры:

Длина затвора - 0,3 мкм;

Ширина затвора - 300 мкм;

Толщина активного слоя - 0,2 мкм;

Концентрация носителей - 2×l017 см-3;

Напряжение отсечки Uoтc. - -2 В.

В управляющих устройствах СВЧ (аттенюаторах, фазовращателях, переключателях и т.д.) полевой транзистор с барьером Шотки работает в ключевом режиме, который предусматривает:

при подаче на затвор полевого транзистора с барьером Шотки напряжения, равного 0 В, полевой транзистор с барьером Шотки откроется и по нему потечет ток (открытое состояние),

при подаче на затвор полевого транзистора с барьером Шотки напряжения, равного напряжению отсечки, полевой транзистор с барьером Шотки закроется и через него ток течь не будет (закрытое состояние).

Заявленный способ основан на измерении комплексных параметров рассеяния (S-параметров).

Полевой транзистор с барьером Шотки включают по схеме с общим истоком и помещают в специальную измерительную линию.

Измерение S-параметров проводят на анализаторе цепей в рабочей полосе частот 0,5…18 ГГц.

В ключевом режиме полевой транзистор с барьером Шотки ведет себя как взаимный прибор СВЧ, поэтому для S-параметров полевого транзистора с барьером Шотки на всех частотах выполняется равенство

S12=S21.

Представляют эквивалентную схему полевого транзистора с барьером Шотки в виде Т-образного соединения трех комплексных сопротивлений

Z1(fk)=R1k+j×X1k,

Z2(fk)=R2k+j×X2k,

Z3(fk)=R3k+j×X3k,

при этом комплексное сопротивление Z3 включают параллельно, а комплексные сопротивления Z1 и Z2 включают последовательно входу и выходу полевого транзистора с барьером Шотки слева и справа относительно комплексного сопротивления Z3 соответственно, каждое из трех комплексных сопротивлений представляют последовательным соединением активного элемента - сопротивления, которое описывают параметром Ri, и двух реактивных элементов - индуктивности, которую описывают параметром Li, и емкости, которую описывают параметром Ci,

а определение значений параметров осуществляют посредством двух математических процедур, при этом

в первой определяют три комплексных сопротивления в 18 точках рабочей полосы частот из математических формул для каждого из состояний:

,

,

,

во второй определяют значения параметров прибора СВЧ Ri, Li и Ci из математических формул:

,

,

,

Итак:

Для открытого состояния собственно параметры полевого транзистора с барьером Шотки составили:

R1=1,24 Ом, R2=1,35 Ом, R3=0,55 Ом,

C1=0,85 пФ, С2=0,15 пФ, С3=0,03 пФ,

L1=0,33 нГн, L2=0,29 нГн, L3=0,05 нГн.

Для закрытого состояния собственно параметры полевого транзистора с барьером Шотки составили:

R1=1,22 Ом, R2=1,28 Ом, R3=0,60 Ом,

C1=0,47 пФ, С2=0,22 пФ, С3=0,06 пФ,

L1=0,34 нГн, L2=0,28 нГн, L3=0,055 нГн.

Из полученных результатов видно:

во-первых, шесть собственно параметров полевого транзистора с барьером Шотки - сопротивлений и индуктивностей - мало изменяются при переходе от одного состояния к другому,

во-вторых, эти параметры определены с высокой точностью - менее 10%.

Таким образом, заявленный способ определения параметров прибора СВЧ по сравнению с прототипом обеспечит:

во-первых, существенное упрощение способа благодаря исключению:

ЭВМ большой мощности,

необходимости выполнения сложной математической процедуры оптимизации с применением упомянутой ЭВМ,

определения начальных значений параметров прибора СВЧ для выполнения процедуры оптимизации с применением упомянутой ЭВМ;

во-вторых, повышение точности примерно в 2-3 раза.

Источники информации

Городецкий А.Ю., Дудинов К.В., Емельянов A.M., Днестранская Е.Ю. «Принцип создания маштабируемых моделей транзисторов на основе наногетероструктур» // Электронная техника, серия 1, СВЧ-техника, 2012 г., вып. 1, с. 91 - прототип.

Похожие патенты RU2566647C1

название год авторы номер документа
АТТЕНЮАТОР СВЧ 2014
  • Балыко Александр Карпович
  • Мякиньков Виталий Юрьевич
  • Савельева Людмила Геннадьевна
  • Дементьева Лариса Анатольевна
RU2568261C2
АТТЕНЮАТОР СВЧ 2014
  • Балыко Александр Карпович
  • Мякиньков Виталий Юрьевич
  • Савельева Людмила Геннадьевна
  • Дементьева Лариса Анатольевна
RU2556427C1
АТТЕНЮАТОР СВЧ 2006
  • Балыко Александр Карпович
  • Зуева Ольга Сергеевна
  • Королев Александр Николаевич
  • Мальцев Валентин Алексеевич
RU2311704C1
ГЕНЕРАТОР СВЧ 2015
  • Балыко Александр Карпович
  • Мякиньков Виталий Юрьевич
  • Савельева Людмила Геннадьевна
  • Балыко Илья Александрович
RU2582559C1
АТТЕНЮАТОР СВЧ 2006
  • Балыко Александр Карпович
  • Зуева Ольга Сергеевна
  • Королев Александр Николаевич
  • Мальцев Валентин Алексеевич
RU2314603C2
ГЕНЕРАТОР УПРАВЛЯЕМЫЙ НАПРЯЖЕНИЕМ 2014
  • Балыко Александр Карпович
  • Мякиньков Виталий Юрьевич
  • Савельева Людмила Геннадьевна
  • Балыко Илья Александрович
RU2568264C1
ГЕНЕРАТОР СВЧ 2015
  • Балыко Александр Карпович
  • Мякиньков Виталий Юрьевич
  • Савельева Людмила Геннадьевна
  • Балыко Илья Александрович
RU2582879C1
ПОЛОСНО-ПРОПУСКАЮЩИЙ ПЕРЕСТРАИВАЕМЫЙ ФИЛЬТР СВЧ 2008
  • Балыко Александр Карпович
  • Королев Александр Николаевич
  • Мальцев Валентин Алексеевич
  • Матюшина Надежда Александровна
  • Никитина Людмила Владимировна
  • Козлова Любовь Николаевна
RU2372695C1
ПОЛОСНО-ПРОПУСКАЮЩИЙ ПЕРЕСТРАИВАЕМЫЙ ФИЛЬТР СВЧ 2013
  • Балыко Александр Карпович
  • Мякиньков Виталий Юрьевич
  • Савельева Людмила Геннадьевна
  • Мамонтов Александр Юрьевич
  • Медянкова Лидия Михайловна
RU2565369C2
ПЕРЕКЛЮЧАТЕЛЬ СВЧ 2007
  • Балыко Александр Карпович
  • Королев Александр Николаевич
  • Мальцев Валентин Алексеевич
  • Слободенюк Галина Васильевна
  • Щербаков Федор Евгеньевич
RU2335832C1

Реферат патента 2015 года СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ПРИБОРА СВЧ

Способ определения параметров прибора СВЧ, включающий измерение в n точках рабочей полосы частот его комплексных параметров рассеяния, моделирование его в рабочей полосе частот в виде эквивалентной схемы, содержащей активные и реактивные элементы, каждый из которых описывают соответствующим параметром, не зависящим от частоты, определение собственно параметров посредством математической процедуры. Причем эквивалентную схему прибора СВЧ представляют в виде Т-образного соединения трех комплексных сопротивлений Z1, Z2, Z3, при этом комплексное сопротивление Z3 включают параллельно, а комплексные сопротивления Z1 и Z2 включают последовательно входу и выходу прибора СВЧ слева и справа относительно комплексного сопротивления Z3 соответственно, каждое из трех комплексных сопротивлений представляют последовательным соединением активного элемента - сопротивления, которое описывают параметром Ri, и двух реактивных элементов - индуктивности, которую описывают параметром Li, и емкости, которую описывают параметром Ci, а определение собственно параметров осуществляют посредством двух математических процедур, при этом в первой определяют три комплексных сопротивления в n точках рабочей полосы частот, во второй - собственно параметры прибора СВЧ Ri, Li и Ci из соответствующих математических формул. Технический результат заключается в существенном упрощении способа и повышении точности определения. 1 з.п. ф-лы.

Формула изобретения RU 2 566 647 C1

1. Способ определения параметров прибора СВЧ, включающий измерение в n точках рабочей полосы частот его комплексных параметров рассеяния, моделирование его в рабочей полосе частот в виде эквивалентной схемы, содержащей активные и реактивные элементы, каждый из которых описывают соответствующим параметром, не зависящим от частоты, определение собственно параметров посредством математической процедуры, отличающийся тем, что эквивалентную схему прибора СВЧ представляют в виде Т-образного соединения трех комплексных сопротивлений

где
R1k, R2k, R3k - активные составляющие трех комплексных сопротивлений соответственно,
X1k, X2k, X3k - реактивные составляющие трех комплексных сопротивлений соответственно,
,
при этом комплексное сопротивление Z3 включают параллельно, а комплексные сопротивления Z1 и Z2 включают последовательно входу и выходу прибора СВЧ слева и справа относительно комплексного сопротивления Z3 соответственно, каждое из трех комплексных сопротивлений представляют последовательным соединением активного элемента - сопротивления, которое описывают параметром Ri, и двух реактивных элементов - индуктивности, которую описывают параметром Li, и емкости, которую описывают параметром Ci,
где
i равно 1, 2, 3, что соответствует трем комплексным сопротивлениям, а определение собственно параметров осуществляют посредством двух математических процедур, при этом в первой определяют три комплексных сопротивления в n точках рабочей полосы частот из математических формул соответственно:
,
,
,
где
S11(fk), S21(fk), S22(fk) - комплексные параметры рассеяния прибора СВЧ, измеренные в n точках рабочей полосы частот,
Z0 - сопротивление на входе и выходе прибора СВЧ,
k равно 1, 2, 3…n,
во второй определяют собственно параметры прибора СВЧ Ri, Li и Ci из математических формул соответственно:
,
,
,
где
,
π=3,14156592.

2. Способ определения параметров прибора СВЧ по п. 1, отличающийся тем, что прибором СВЧ может быть, например, электронный прибор, полупроводниковый прибор, электровакуумный прибор, электродинамическая система.

Документы, цитированные в отчете о поиске Патент 2015 года RU2566647C1

Способ определения @ -параметров СВЧ-четырехполюсника 1984
  • Чупров Игорь Иосифович
SU1298693A1
Способ определения параметров протяженных СВЧ-трактов 1984
  • Ильницкий Людвиг Яковлевич
  • Шимберг Ион Львович
SU1364998A1
СПОСОБ ДИСТАНЦИОННОГО КОНТРОЛЯ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК РАДИОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ НА ПРИМЕРЕ ИЗМЕРИТЕЛЯ КОМПЛЕКСНЫХ ПАРАМЕТРОВ СВЧ-УСТРОЙСТВ 2006
  • Гусинский Александр Владимирович
  • Кострикин Анатолий Михайлович
  • Толочко Татьяна Константиновна
RU2379699C2
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ШУМОВЫХ ПАРАМЕТРОВ ТРАНЗИСТОРОВ НА СВЧ 1992
  • Балыко А.К.
  • Пчелин В.А.
  • Тагер А.С.
RU2085960C1
US 3619780 A1, 09.11.1971;
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ШУМОВЫХ ПАРАМЕТРОВ ЧЕТЫРЕХПОЛЮСНИКА СВЧ 2012
  • Балыко Александр Карпович
  • Королев Александр Николаевич
  • Мякиньков Виталий Юрьевич
  • Сафонова Елена Олеговна
  • Гурычев Владимир Александрович
RU2499274C1

RU 2 566 647 C1

Авторы

Балыко Александр Карпович

Мякиньков Виталий Юрьевич

Савельева Людмила Геннадьевна

Балыко Илья Александрович

Даты

2015-10-27Публикация

2014-07-22Подача