Настоящее изобретение относится к способу обработки газа, содержащего оксиды азота (NOx), с применением в качестве катализатора композиции на основе циркония, церия и ниобия.
Известно, что двигатели автотранспортных средств выбрасывают газы, содержащие оксиды азота (NOx), которые являются вредными для окружающей среды. Таким образом, необходимо обрабатывать эти оксиды с целью их превращения в азот.
Известным способом такой обработки является способ SCR (по-английски Selective Catalytic Reduction (селективное каталитическое восстановление)), в котором восстановление NOx осуществляют аммиаком или предшественником аммиака, таким как мочевина.
Способ SCR обеспечивает эффективную обработку газов, но тем не менее его эффективность при низкой температуре требует улучшения. Так, например, каталитические системы, применяемые в настоящее время для осуществления указанного способа, часто являются эффективными только при температурах выше 250°C. Таким образом, представляется интересным разработать катализаторы, которые проявляли приемлемую активность при температуре около 250°C.
Предпринимаются такие попытки найти катализаторы, обладающие улучшенным сопротивлением старению, например, катализаторов, сохраняющих значительную эффективность после воздействия температуры в интервале от 900 до 1000°C.
Таким образом, цель настоящего изобретения состоит в разработке катализаторов, являющихся наиболее эффективными для катализа SCR.
Ввиду этого способ по настоящему изобретению представляет собой способ обработки содержащего оксиды азота (NOx) газа, согласно которому реакцию восстановления NOx осуществляют с азотсодержащим восстановителем и который отличается тем, что в качестве катализатора реакции восстановления применяют каталитическую систему, содержащую композицию на основе циркония, церия и ниобия, со следующим содержанием по массе в расчете на оксиды:
- оксид церия: в интервале от 5 до 50%, указанное последнее значение исключается;
- оксид ниобия: в интервале от 5 до 20%;
- оксид циркония: остальное.
Прочие характеристики, подробности и преимущества настоящего изобретения можно уяснить более полно при изучении нижеследующего далее описания и разных конкретных примеров, приведенных неограничительным образом и предназначенных для пояснения.
В настоящем описании под редкоземельными элементами понимают элементы группы, в которую входят иттрий и элементы периодической системы элементов с атомными номерами с 57 по 71 включительно.
Под удельной поверхностью понимают удельную поверхность БЭТ, определенную по адсорбции азота соответственно стандарту ASTM D 3663-78, разработанному на основе способа БРУНАУЭРА-ЭММЕТТА-ТЕЛЛЕРА, описанного в "The Journal of the American Society, 60, 309 (1938)".
Прокаливание, упомянутое в описании, означает прокаливание на воздухе, если не указано иное. Продолжительность прокаливания указана для температуры, соответствующей протяженности плато при этой температуре.
Значения удельной поверхности, указанные для заданных температуры и продолжительности, соответствуют, если не указано иное, прокаливанию на воздухе при плато этой температуры и указанной продолжительности.
Количества или соотношение количеств приведены по массе в расчете на оксиды (предпочтительно CeO2, Ln2O3, причем Ln означает трехвалентный редкоземельный элемент, Pr6O11 в предпочтительном случае празеодима, Nb2O5 в случае ниобия), если не указано иное.
Следует также уточнить для понимания последующего описания, что если не указано иное, в интервалы приведенных значений входят граничные значения.
Композиция каталитической системы по настоящему изобретению характеризуется качественным составом и соотношением компонентов.
Так, например, она представляет собой композицию на основе циркония, церия и ниобия, причем цирконий, ниобий и церий содержатся в композиции в общем случае в виде оксидов. Тем не менее, не исключается возможность того, что эти элементы могут содержаться по меньшей мере частично в другой форме, например в виде гидроксидов или оксигидроксидов.
В то же время, эти элементы содержатся в специфических соотношениях, приведенных ранее.
Содержание оксида церия по массе в композиции может составлять предпочтительно от 5 до 40%, более предпочтительно от 10 до 40% или от 15 до 40% и наиболее предпочтительно от 10 до 30% или от 15 до 30%.
Содержание оксида ниобия по массе в композиции более предпочтительно может составлять от 5 до 15% и наиболее предпочтительно от 5 до 10%. При значении менее 5% заметна меньшая эффективность композиции, а при значении более 20% дальнейшее улучшение ее эффективности не наблюдается.
Согласно особому варианту осуществления настоящего изобретения, содержание оксида циркония более предпочтительно может составлять от 60 до 85% и наиболее предпочтительно от 65 до 80%.
В другом варианте осуществления настоящего изобретения композиция каталитической системы по настоящему изобретению дополнительно содержит по меньшей мере один элемент M, выбранный из группы, в которую входят вольфрам, молибден, железо, медь, кремний, алюминий, марганец, титан, ванадий и редкоземельные элементы, отличные от церия, в следующем количестве по массе в расчете на оксиды:
- оксид церия: в интервале от 5 до 50%, указанное последнее значение исключается;
- оксид ниобия: от 5 до 20%;
- оксид элемента M: до 20%;
- оксид циркония: остальное.
Как и в случае циркония или церия, элемент M присутствует в композиции в общем случае в виде оксида, но другие формы (гидроксиды или оксигидроксиды) не исключаются.
Элемент M предпочтительно может играть роль стабилизатора удельной поверхности смешанного оксида циркония и церия или также улучшать восстановительную способность композиции. Для понимания последующего описания необходимо пояснить, что если с целью упрощения указан только один элемент M, то подразумевается, что изобретение применимо и в случае, когда композиции содержат несколько элементов M.
Максимальное количество оксида элемента M в случае редкоземельных элементов и вольфрама более предпочтительно может составлять не более 15% и наиболее предпочтительно не более 10% масс. оксида элемента M (редкоземельного элемента и/или вольфрама). Минимальное количество составляет по меньшей мере 1% и более предпочтительно по меньшей мере 2%, причем указанные значения выражены по отношению к совокупности "оксид циркония - оксид церия - оксид ниобия - оксид элемента M".
В случае, когда M не представляет собой ни редкоземельный элемент, ни вольфрам, количество оксида элемента M более предпочтительно может составлять не более 10% и наиболее предпочтительно не более 5%. Минимальное количество может составлять по меньшей мере 1%. Это количество выражено в расчете на оксид элемента M по отношению к совокупности оксида циркония, оксида церия, оксида ниобия и оксида элемента M.
В случае редкоземельных элементов элемент M более предпочтительно может представлять собой редкоземельный элемент, отличающийся от иттрия, и предпочтительно лантан, празеодим и неодим.
Настоящее изобретение относится также к варианту, в котором композиции состоят в основном из указанных ранее элементов, представляющих собой цирконий, церий, ниобий и при необходимости элемент M. Под выражением "состоит в основном" понимают, что рассмотренная композиция содержит только указанные ранее элементы в указанных ранее формах и не содержит других функциональных элементов, то есть элементов, способных оказывать положительное влияние на каталитическое действие, восстановительную способность и/или стабильность композиции. В противоположность этому композиция может содержать элементы, которые в качестве примесей могут, в частности, поступать в зависимости от способа получения, например, с исходными материалами или исходными реагентами.
Композиции каталитической системы по настоящему изобретению имеют достаточно стабильную удельную поверхность, то есть поверхность, являющуюся достаточно большой при высокой температуре, чтобы композиции были приемлемыми для использования в катализе.
Таким образом, в общем случае композиции каталитической системы по настоящему изобретению после прокаливания в течение 4 часов при 800°C могут иметь удельную поверхность, которая составляет по меньшей мере 35 м2/г и более предпочтительно по меньшей мере 40 м2/г.
Композиции каталитической системы по настоящему изобретению после прокаливания при 900°C в течение 4 часов могут иметь также удельную поверхность, которая составляет по меньшей мере 15 м2/г и более предпочтительно по меньшей мере 20 м2/г.
Композиции при необходимости могут иметь форму твердого раствора оксидов ниобия, церия и при необходимости элемента M в оксиде циркония. При этом в данном случае при дифракции рентгеновских лучей наблюдают наличие единственной фазы, соответствующей кубической или тетрагональной фазе смешанного оксида церия и циркония. Эта единственная фаза может присутствовать в композициях, подвергнутых прокаливанию при температуре до 900°C.
Композиции каталитической системы по настоящему изобретению могут быть получены известным способом пропитки. Так, например, предварительно полученный смешанный оксид циркония и церия пропитывают раствором, содержащим соединение ниобия, например оксалат ниобия или оксалат ниобия и аммония. В случае получения композиции, дополнительно содержащей оксид элемента M, для пропитки используют раствор, содержащий соединение элемента M, наряду с соединением ниобия. Элемент M может содержаться также в пропитываемом исходном смешанном оксиде циркония и церия.
Пропитку более предпочтительно осуществляют в сухом состоянии. Пропитка в сухом состоянии состоит в прибавлении к пропитываемому веществу раствора, который содержит пропитывающий элемент, объем которого равен объему пор пропитываемого твердого тела.
Оксид циркония и церия должен иметь удельную поверхность, которая обеспечивает приемлемость его использования в катализе. Так, например, эта поверхность должна быть стабильной, то есть ее значение должно быть приемлемым для такого использования даже при повышенной температуре.
В случае такого оксида, содержащего при необходимости элемент M, предпочтительно в случае, когда M представляет собой редкоземельный металл, в качестве продуктов, приемлемых по настоящему изобретению, можно назвать продукты, описанные, в частности, в заявках EP 605274, EP 1991354, EP 614854, EP 863846, EP 1527018, EP 1603667, EP 2007682 и EP 2024084. Таким образом, касательно сведений для осуществления настоящего изобретению в случае необходимости можно сослаться на описания указанных заявок.
В то же время, композиция по настоящему изобретению может быть получена также известными способами типа способа соосаждения, представляющего собой способ, в случае которого к раствору, содержащему соли основных элементов композиции, прибавляют основание, а затем полученный осадок прокаливают, или также типа способа с реакцией между твердыми телами, в случае которого оксиды этих элементов или предшественники этих оксидов измельчают, а затем смесь, полученную при измельчении, прокаливают.
Каталитическая система, применяемая в способе по настоящему изобретению, содержит композицию соответственно описанному ранее, причем эту композицию в общем случае смешивают с материалом, используемым как правило в каталитических композициях, то есть с материалом, выбранным из термически инертных материалов. Этот материал может быть выбран из оксида алюминия, оксида титана, ортита, циркона, диоксида кремния, шпинелей, силикатов, кристаллических фосфатов силикоалюминия, кристаллических фосфатов алюминия.
В общем случае каталитическая система, применяемая в способе по настоящему изобретению, может состоять из указанной ранее смеси, нанесенной на подложку. Более точно, смесь композиции и термически инертного материала образует покрытие (грунтовочный слой), обладающее каталитическими свойствами, причем это покрытие наносят на подложку типа, например, металлического монолита, например из сплава FerCralloy, или из керамики, например из кордиерита, карбида кремния, титаната алюминия или муллита.
Это покрытие получают смешиванием композиции с термически инертным материалом с целью образования суспензии, которая затем может быть нанесена на подложку.
В другом варианте осуществления каталитическая система, применяемая в способе по настоящему изобретению, может представлять собой систему на основе композиции соответственно описанному ранее, причем композицию используют в экструдированной форме. Она может находиться также в форме монолита, имеющего структуру пчелиных сот, или в форме монолита типа сажевого фильтра (с частично закрытыми каналами). В двух этих случаях композиция по настоящему изобретению может быть смешана с известными добавками для облегчения экструзии и обеспечения механической прочности экструдированного продукта. Такие добавки предпочтительно могут быть выбраны из диоксида кремния, оксида алюминия, глин, силикатов, сульфата титана, керамических волокон предпочтительно в используемых в общем случае пропорциях, то есть при содержании приблизительно 30% масс. по отношению к совокупности композиции.
Изобретение также относится к каталитической системе, содержащей цеолит, наряду с композицией на основе церия, циркония и ниобия.
Цеолит может представлять собой природный или синтетический цеолит и может представлять собой алюмосиликат, алюмофосфат или силикоалюмофосфат.
Предпочтительно используют цеолит, подвергнутый обработке для улучшения его стабильности при высокой температуре. В качестве примеров обработки можно назвать: (i) деалюминирование посредством обработки паром и кислотной экстракции с использованием кислоты или комплексообразующего агента (например, ЭДТА (этилендиаминтетрауксусная кислота)), обработки кислотой и/или комплексообразующим агентом, обработки в потоке газообразного SiCl4; (ii) катионный обмен с использованием многовалентных катионов, таких как La; (iii) использование фосфорсодержащих соединений.
В другом предпочтительном варианте осуществления настоящего изобретения в случае цеолита типа алюмосиликата цеолит может иметь атомное соотношение Si/Al, равное по меньшей мере 10 и более предпочтительно по меньшей мере 20.
В более предпочтительном варианте осуществления настоящего изобретения цеолит содержит по меньшей мере один другой элемент, выбранный из группы, в которую входят железо, медь или церий.
Под цеолитом, содержащим по меньшей мере один другой элемент, понимают цеолит, в структуру которого посредством ионообмена, пропитки или изоморфного замещения введен один или несколько металлов указанного ранее типа.
В этом варианте осуществления содержание металла может находиться в интервале приблизительно от 1 до приблизительно 5%, при этом содержание выражено в расчете на массу металлического элемента по отношению к цеолиту.
В качестве цеолитов алюмосиликатного типа, которые могут входить в состав композиции каталитической системы по настоящему изобретению, более предпочтительно можно назвать цеолиты, выбранные из группы, в которую входят бета-, гамма-цеолиты, ZSM 5 и ZSM 34. Среди цеолитов алюмофосфатного типа можно назвать цеолиты типа SAPO-17, SAPO-18, SAPO-34, SAPO-35, SAPO-39, SAPO-43 и SAPO-56.
В каталитической системе по настоящему изобретению содержание цеолита в массовых процентах по отношению к общей массе композиции может изменяться в интервале от 10 до 70%, более предпочтительно от 20 до 60% и наиболее предпочтительно от 30 до 50%.
Для реализации этого варианта с цеолитом в каталитической системе можно осуществлять простое физическое смешивание композиции на основе церия, циркония и ниобия с цеолитом.
Этот вариант настоящего изобретения, в котором используется комбинация цеолита соответственно описанному ранее и композиции по настоящему изобретению, обеспечивает улучшенную активность каталитической системы по настоящему изобретению в отношении восстановления NOx.
Способ обработки газа по настоящему изобретению представляет собой способ типа SCR, осуществление которого хорошо понятно специалистам в данной области техники.
Можно напомнить, что в этом способе в качестве восстановителя NOx используют азотсодержащий восстановитель, который может представлять собой аммиак, гидразин или любой приемлемый предшественник аммиака, такой как карбонат аммония, мочевина, карбамат аммония, гидрокарбонат аммония, формиат аммония или также металлоорганические соединения, содержащие аммиак. Более предпочтительно могут быть выбраны аммиак или мочевина.
В способе SCR для восстановления NOx до элементарного азота могут быть осуществлены несколько химических реакций. Далее приведены только в качестве примеров некоторые из реакций, которые могут происходить, причем аммиак представляет собой восстановитель.
Первая реакция может быть представлена уравнением (1):
4NO+4NH3+O2→4N2+6H2O (1)
Кроме того, можно упомянуть реакцию NO2, содержащегося в NOx, с NH3 согласно уравнению (2):
3NO2+4NH3→(7/2)N2+6H2O (2)
Кроме того, реакция между NH3 и NO и NO2 может быть представлена уравнением (3):
NO+NO2+2NH3→2N2+3H2O (3)
Способ может быть применен для обработки газа, выбрасываемого двигателем внутреннего сгорания (ходовым или стационарным), предпочтительно двигателем автотранспортного средства, или газа, выбрасываемого газовой турбиной, теплоэлектростанциями, работающими на угле или жидком топливе, или любой другой промышленной установкой.
В предпочтительном варианте осуществления способ применяют для обработки выхлопных газов двигателя внутреннего сгорания с обедненной горючей смесью или дизельного двигателя.
Способ может быть осуществлен также в случае использования, наряду с композицией по настоящему изобретению, другого катализатора, представляющего собой катализатор окисления монооксида азота, содержащегося в газе, до диоксида азота. В этом случае способ применяют в системе, в которой указанный катализатор окисления расположен до точки ввода азотсодержащего восстановителя в выхлопные газы.
Указанный катализатор окисления может содержать по меньшей мере один металл платиновой группы, такой как платина, палладий или родий, на носителе, например, типа оксида алюминия, диоксида церия, диоксида циркония, оксида титана, причем комплекс "катализатор/носитель" включен в покрытие (грунтовочный слой) предпочтительно на подложке монолитного типа.
В предпочтительном варианте настоящего изобретения и в случае выхлопного контура, оснащенного сажевым фильтром, предназначенным для задержания углеродистых частиц или сажи, образующихся при сжигании различных видов горючего, способ обработки газа по настоящему изобретению можно осуществлять, размещая описанную ранее каталитическую систему в этом фильтре, например, в виде грунтовочного слоя, нанесенного на стенки фильтра. Замечено, что применение композиции по настоящему изобретению согласно этому варианту позволяет, кроме того, уменьшить температуру, начиная с которой прекращается сгорание частиц.
Далее приведены примеры.
ПРИМЕР 1
Данный пример относится к получению композиции на основе оксидов церия, циркония и ниобия при содержании 18, 72 и 10% по массе соответственно.
Раствор оксалата ниобия (V) и аммония готовят растворением при нагревании 192 г оксалата ниобия (V) и аммония в 300 г деионизированной воды. Этот раствор нагревают до 50°C. Концентрация этого раствора составляет 14,2% по Nb2O5. Затем этим раствором пропитывают порошок смешанного оксида церия и циркония (с содержанием CeO2/ZrO2 от 20 до 80% по массе и удельной поверхностью после прокаливания при 800°C в течение 4 часов, равной 62 м2/г) до насыщения объема пор.
Далее пропитанный порошок прокаливают при 800°C в течение 4 часов.
ПРИМЕР 2
Данный пример относится к получению композиции на основе оксидов церия, циркония и ниобия при массовом содержании 19, 74 и 7% соответственно.
Раствор оксалата ниобия (V) и аммония готовят растворением при нагревании 134 г оксалата ниобия (V) и аммония в 300 г деионизированной воды. Этот раствор нагревают до 50°C. Концентрация этого раствора составляет 9,9% по Nb2O5. Затем этим раствором пропитывают порошок смешанного оксида церия и циркония, идентичный примеру 1. Далее пропитанный порошок прокаливают при 800°C в течение 4 часов.
ПРИМЕР 3 (СРАВНИТЕЛЬНЫЙ)
Данный пример относится к получению композиции на основе оксидов церия, циркония и ниобия при массовом содержании 19, 78 и 3% соответственно.
Раствор оксалата ниобия (V) и аммония готовят растворением при нагревании 58 г оксалата ниобия (V) и аммония в 300 г деионизированной воды. Этот раствор нагревают до 50°C. Концентрация этого раствора составляет 4,3% по Nb2O5. Затем этим раствором пропитывают порошок смешанного оксида церия и циркония, идентичный примеру 1, до насыщения объема пор.
Далее пропитанный порошок прокаливают при 800°C в течение 4 часов.
В таблице 1, представленной далее, приведены характеристики поверхности композиций по предыдущим примерам.
ПРИМЕР 4
В данном примере описаны каталитические свойства композиций по предыдущим примерам при катализе SCR. Оценка этих свойств осуществлена в условиях, описанных далее.
В первой серии измерений использованные композиции представляют собой композиции, полученные непосредственно синтезом, описанным в предыдущих примерах, то есть композиции, подвергнутые прокаливанию при 800°C в течение 4 часов.
Во второй серии измерений использованные композиции представляют собой композиции по предыдущим примерам, подвергнутые дополнительному прокаливанию при 900 и 1000°C в течение 2 часов в обоих случаях.
Затем композиции оценивали в испытании на катализ. В этом испытании через композицию (90 мг) пропускали искусственную газообразную смесь (30 л/ч), являющуюся типичной при процессе катализа (таблица 2).
Состав типичной смеси
При этом определяли степень конверсии NOx в зависимости от температуры газообразной смеси.
Результаты, указанные в % степени конверсии NOx (в данном случае NO и NO2) при двух температурах газообразной смеси, равных 250°C и 400°C, приведены в таблице 3, представленной далее.
Установлено, что композиции по настоящему изобретению при 400°C имеют улучшенную активность по сравнению с активностью по сравнительному примеру, причем эта активность является значительно более высокой при низкой температуре (250°C), чем активность композиции по сравнительному примеру. При этом активность после старения композиций при 900 или 1000°C остается еще значительной.
название | год | авторы | номер документа |
---|---|---|---|
КОМПОЗИЦИЯ НА ОСНОВЕ ОКСИДОВ ЦИРКОНИЯ, ЦЕРИЯ, НИОБИЯ И ОЛОВА, СПОСОБЫ ПОЛУЧЕНИЯ И ПРИМЕНЕНИЕ ДЛЯ КАТАЛИЗА | 2014 |
|
RU2673295C2 |
СПОСОБ ОБРАБОТКИ ГАЗА, СОДЕРЖАЩЕГО ОКСИДЫ АЗОТА (NOx), В КОТОРОМ КОМПОЗИЦИЯ, ВКЛЮЧАЮЩАЯ ОКСИД ЦЕРИЯ И ОКСИД НИОБИЯ, ПРИМЕНЯЕТСЯ В КАЧЕСТВЕ КАТАЛИЗАТОРА | 2011 |
|
RU2541070C2 |
СПОСОБЫ СЕЛЕКТИВНОГО КАТАЛИТИЧЕСКОГО ВОССТАНОВЛЕНИЯ С ИСПОЛЬЗОВАНИЕМ ЛЕГИРОВАННЫХ ОКСИДОВ ЦЕРИЯ(IV) | 2014 |
|
RU2664905C2 |
КОМПОЗИЦИЯ НА ОСНОВЕ ЦЕРИЯ, ЦИРКОНИЯ И ВОЛЬФРАМА, СПОСОБ ПОЛУЧЕНИЯ И ПРИМЕНЕНИЕ В КАТАЛИЗЕ | 2011 |
|
RU2549573C2 |
АЛЮМОСИЛИКАТНОЕ ИЛИ СИЛИКОАЛЮМОФОСФАТНОЕ МОЛЕКУЛЯРНОЕ СИТО/ОКТАЭДРИЧЕСКОЕ МОЛЕКУЛЯРНОЕ СИТО НА ОСНОВЕ МАРГАНЦА В КАЧЕСТВЕ КАТАЛИЗАТОРОВ ДЛЯ ОБРАБОТКИ ВЫХЛОПНЫХ ГАЗОВ | 2014 |
|
RU2662821C2 |
ЦЕОЛИТНЫЙ КАТАЛИЗАТОР, СОДЕРЖАЩИЙ МЕТАЛЛ | 2011 |
|
RU2614411C2 |
КАТАЛИЗАТОР ДЛЯ ОБРАБОТКИ ВЫХЛОПНЫХ ГАЗОВ | 2014 |
|
RU2675821C2 |
НЕ СОДЕРЖАЩИЙ МЕТАЛЛА ПЛАТИНОВОЙ ГРУППЫ КАТАЛИЗАТОР ОКИСЛЕНИЯ ПРОСКОЧИВШЕГО АММИАКА | 2015 |
|
RU2715701C2 |
СОСТАВ ЛОВУШКИ ДЛЯ NOx | 2014 |
|
RU2674020C2 |
СИСТЕМА ОЧИСТКИ ВЫБРОСОВ С КАТАЛИЗАТОРАМИ TWC И КАТАЛИЗАТОРАМИ SCR-HCT | 2015 |
|
RU2689059C2 |
Изобретение относится к способу обработки газа, содержащего оксиды азота (NOx). Способ обработки содержащего оксиды азота (NOx) газа, в соответствии с которым реакцию восстановления NOx осуществляют с азотсодержащим восстановителем, отличается тем, что в качестве катализатора реакции восстановления применяют каталитическую систему, содержащую композицию на основе циркония, церия и ниобия со следующим содержанием по массе в расчете на оксиды: оксид церия: в интервале от 5 до 50%, причем указанное последнее значение исключено; оксид ниобия: в интервале от 5 до 20%; оксид циркония: остальное. Технический результат - повышение эффективности обработки газа. 10 з.п. ф-лы, 3 табл.
1. Способ обработки содержащего оксиды азота (NOx) газа, в соответствии с которым реакцию восстановления NOx осуществляют с азотсодержащим восстановителем, отличающийся тем, что в качестве катализатора реакции восстановления применяют каталитическую систему, содержащую композицию на основе циркония, церия и ниобия, со следующим содержанием по массе в расчете на оксиды:
- оксид церия: в интервале от 5 до 50%, причем указанное последнее значение исключено;
- оксид ниобия: в интервале от 5 до 20%;
- оксид циркония: остальное.
2. Способ по п. 1, отличающийся тем, что композиция дополнительно содержит по меньшей мере один элемент М, выбранный из группы, в которую входят вольфрам, молибден, железо, медь, кремний, алюминий, марганец, титан, ванадий и редкоземельные элементы, отличные от церия, со следующим содержанием по массе в расчете на оксиды:
- оксид церия: в интервале от 5 до 50%, причем указанное последнее значение исключено;
- оксид ниобия: от 5 до 20%;
- оксид элемента М: до 20%;
- оксид циркония: остальное.
3. Способ по п. 1 или 2, отличающийся тем, что композиция содержит оксид церия в интервале от 5 до 40% масс.
4. Способ по п. 1 или 2, отличающийся тем, что композиция содержит оксид церия в интервале от 10 до 40% масс.
5. Способ по п. 1 или 2, отличающийся тем, что композиция содержит оксид церия в интервале от 10 до 30% масс.
6. Способ по п. 1 или 2, отличающийся тем, что композиция содержит оксид ниобия в интервале от 5 до 15% масс.
7. Способ по п. 1 или 2, отличающийся тем, что композиция содержит оксид ниобия в интервале от 5 до 10% масс.
8. Способ по п. 1 или 2, отличающийся тем, что каталитическая система дополнительно содержит цеолит.
9. Способ по п. 1 или 2, отличающийся тем, что в качестве азотсодержащего восстановителя применяют аммиак или мочевину.
10. Способ по п. 1 или 2, отличающийся тем, что обрабатывают выхлопные газы двигателя автотранспортного средства.
11. Способ по п. 10, отличающийся тем, что каталитическую систему размещают в сажевом фильтре, или тем, что фильтр представляет собой фильтр на основе вышеуказанной композиции, причем композиция находится в экструдированной форме.
US 2008009581 A1, 24.04.2008; |
Авторы
Даты
2015-10-27—Публикация
2012-02-28—Подача