Изобретение относится к теплоэнергетике, а именно к области энергетического машиностроения, и позволяет обеспечить эффективность и экологичность сжигания жидкого и газообразного топлива за счет возможности регулирования температуры горения.
Известно изобретение «Способ горения и устройство для его осуществления» (US 7086854 B2, МПК F23C 3/00, F23C 9/00, F23R 3/42, опубл. 08.08.2006; RU 2006114435 A, МПК F23C 3/00, опубл. 10.11.2007), включающее камеру сгорания и выполненный в ней реактор, расположенный между впускным и выпускным отверстиями и содержащий зону основного потока. Вблизи выпускного отверстия расположена зона рециркуляции, образованная стенкой с закругленной внутренней поверхностью и точкой отрыва потока. Внутренняя поверхность сформирована и расположена относительно направления движения основного потока таким образом, чтобы отделять часть текучей среды в направлении движения основного потока в точке его отрыва для образования рециркуляционного вихревого потока в зоне рециркуляции во время работы реактора. Большая часть основного потока из реактора проходит по направлению движения через зону основного потока, меньшая - через зону рециркуляции.
Недостатком изобретения является невозможность регулирования рециркуляции без изменения конструкции устройства.
Известно изобретение «Вихревая топка» (RU 2406023, МПК F23C 5/00, опубл. 10.12.2010), включающее вертикальный корпус, состоящий из набора цилиндрических обечаек с увеличивающимся диаметром для каждой вышестоящей ступени, бункер для золы, каналы рециркуляции между ступенями, каналы тангенциального подвода полидисперсного топлива и первичного воздуха в нижнюю область топочного пространства, каналы тангенциального подвода вторичного воздуха в верхнюю область топочного пространства, каналы золоудаления из верхней ступени в бункер для золы, выхлопную трубу. Каналы рециркуляции и золоудаления образованы кольцевым пространством между вставленными друг в друга цилиндрическими обечайками различной высоты, причем каналы рециркуляции имеют выход в топочное пространство в зоне разрежения через кольцевую щель между соседними ступенями. Под нижней ступенью и кольцевой щелью установлена цилиндрическая ступень большего диаметра с конфузором в верхней части.
Недостатком изобретения является невозможность регулирования температуры факела в реальном времени, в результате чего может произойти зашлаковывание поверхностей нагрева.
Наиболее близким, принятым за прототип, является изобретение «Высокотемпературный циклонный реактор» (RU 2350838, МПК F23C 5/24, опубл. 27.03.2009), в котором реактор содержит цилиндрический четырехступенчатый вертикальный корпус, состоящий из первой ступени с кольцевым каналом перемешивания топлива и окислителя и трубой ввода горелки. Вторая ступень диаметром в 1,3-1,5 раза больше первой содержит каналы рециркуляции топлива, а третья ступень диаметром в 1,3-1,5 раза больше второй имеет кольцевой канал для подвода вторичного воздуха с регулирующими заслонками. Верхняя (четвертая) ступень диаметром в 1,4-1,5 раза больше третьей имеет выхлопную трубу и соединена трубами золоудаления с бункером, который соединен с первой ступенью реактора шлакоотводной трубой. При сжигании низкосортных топлив реактор может содержать и больше четырех ступеней разделения топлива на фракции.
Недостатками изобретения являются невозможность регулирования температуры горения и степени закрутки потока в факеле. В результате для полного сжигания низкореакционного топлива требуется увеличение количества ступеней, что приводит к увеличению металлоемкости реактора.
Задача изобретения - регулирование температуры горения и дальнобойности факела, снижение металлоемкости устройства.
Поставленная задача достигается тем, что устройство для сжигания жидкого и газообразного топлива содержит корпус, канал рециркуляции, регулирующую заслонку и выхлопную трубу. В корпусе расположены камера сгорания, конвективный газоход и пучок дымогарных труб, охлаждаемые водяной рубашкой. Камера сгорания и конвективный газоход соединены между собой каналом рециркуляции и каналом прохода дымовых газов. Конвективный газоход совмещен с пучком дымогарных труб, на выходе из которых расположены газоход и выхлопная труба. Корпус соединен с крышкой, в которой выполнены отверстие для горелки и регулирующая заслонка, позволяющая изменять сечение для прохода дымовых газов в канале рециркуляции. В верхней части корпуса расположены патрубки, предназначенные для подвода и отвода воды.
Изобретение поясняется следующими чертежами.
На фиг. 1 показан продольный разрез устройства для сжигания жидкого и газообразного топлива.
На фиг. 2 показан поперечный разрез устройства для сжигания жидкого и газообразного топлива (Α-A), проходящий через крышку.
На фиг. 3 показан поперечный разрез устройства для сжигания жидкого и газообразного топлива (Б-Б), проходящий через корпус.
На фиг. 4 показано трехмерное изображение устройства для сжигания жидкого и газообразного топлива с продольным разрезом корпуса.
Устройство для сжигания жидкого и газообразного топлива содержит крышку 1 и корпус 2, внутри которого расположены камера сгорания 3, конвективный газоход 4 и пучок дымогарных труб 5, охлаждаемые водяной рубашкой 6. Камера сгорания 3 и конвективный газоход 4 соединены между собой каналом рециркуляции 7 и каналом прохода дымовых газов 8. Конвективный газоход 4 совмещен с пучком дымогарных труб 5, на выходе из которых (по ходу дымовых газов) расположены газоход 9 и выхлопная труба (не показана). В верхней части корпуса 2 расположены патрубки 10 и 11, предназначенные для подвода и отвода воды.
В крышке 1 выполнены отверстие для горелки 12 и регулирующая заслонка 13, позволяющая изменять сечение для прохода дымовых газов в канале рециркуляции 7.
Устройство работает следующим образом.
Корпус 2 заполняют водой через патрубок 10, образуя водяную рубашку 6. Горелочное устройство (не показано), через которое в камеру сгорания 3 подают воздушно-топливную смесь и производят розжиг, устанавливают в отверстие для горелки 12, выполненное в крышке 1. Сжигание топлива осуществляют в камере сгорания 3, образующиеся при этом дымовые газы через канал рециркуляции 7 и канал прохода дымовых газов 8 поступают в конвективный газоход 4. Из конвективного газохода 4 дымовые газы идут в пучок дымогарных труб 5, после которого покидают устройство через газоход 9 и выхлопную трубу.
- Изменение положения регулирующей заслонки 13 позволяет управлять количеством дымовых газов, идущих на рециркуляцию, и тем самым влиять на температуру ядра горения и интенсивность турбулентости на входе в зону рециркуляции:
- Изменение проходного сечения канала рециркуляции 7 увеличивает (при открытии регулирующей заслонки 13) или уменьшает (при ее закрытии) долю дымовых газов в рециркулирующем потоке. Рециркулирующий поток дымовых газов, направляясь в канал рециркуляции 7, контактирует с устьем факела, отдавая при этом за счет теплопроводности и турбулентной диффузии часть тепла поступающей воздушно-топливной смеси. В результате появляется возможность интенсификации воспламенения и протекания реакции горения. Техническим результатом является регулирование температуры горения и дальнобойности факела.
- Увеличение доли рециркулирующего потока через канал рециркуляции 7 приводит к росту турбулентной скорости горения, что дополнительно снижает дальнобойность факела и позволяет уменьшить активный объем камеры сгорания. Техническим результатом является снижение металлоемкости устройства.
Тепло, полученное при сжигании топлива в камере сгорания 3 и в результате теплообмена в конвективном газоходе 4 и пучке дымогарных труб 5, передается воде, находящейся внутри корпуса. Далее нагретая вода через патрубок 11 при помощи насоса поступает к потребителю.
Заявляемое устройство может быть использовано объектами «малой» энергетики для теплоснабжения жилых и промышленных помещений, поселков городского типа и сельских поселений.
Работа устройства поясняется следующими примерами.
Устройство для сжигания жидкого и газообразного топлива выполнено мощностью 500 кВт, для этого размеры камеры сгорания 4 составляют: диаметр 884 мм, длина 1750 мм. Сечение для прохода дымовых газов поворотного канала 8 выполнено площадью 0,140 м2, а сечение канала рециркуляции 7-0,035 м2.
При полностью закрытой регулирующей заслонке 13 сечение для прохода дымовых газов канала рециркуляции 7 равно нулю. В этом случае температура в ядре факела составляет 1624°C, а длина факела равна 1,10 м.
При открытии регулирующей заслонки 13 на 50% сечение для прохода дымовых газов канала рециркуляции 7 равно 0,0175 м2. В этом случае температура в ядре факела составляет 1516°C, а длина факела равна 0,63 м.
При открытии регулирующей заслонки 13 на 100% сечение для прохода дымовых газов канала рециркуляции 7 равно 0,035 м2. В этом случае температура в ядре факела составляет 1442°, а длина факела равна 0,94 м.
Увеличение длины факела, наблюдаемое при увеличении степени открытия регулирующей заслонки 13, обусловлено понижением температуры в факеле, и, как следствие, снижением кинетической скорости реакции горения. Оптимальные параметры сжигания жидкого и газообразного топлива определяют опытным путем посредством постепенного открывания регулирующей заслонки.
название | год | авторы | номер документа |
---|---|---|---|
НИЗКОЭМИССИОННЫЙ ЦИКЛОННЫЙ РЕАКТОР | 2010 |
|
RU2446350C1 |
ТЕПЛООБМЕННИК | 2005 |
|
RU2291347C2 |
ВОДОГРЕЙНЫЙ КОТЕЛ | 1991 |
|
RU2038544C1 |
ГОРИЗОНТАЛЬНЫЙ ОТОПИТЕЛЬНЫЙ КОТЕЛ | 1992 |
|
RU2042878C1 |
ВЫСОКОТЕМПЕРАТУРНЫЙ ЦИКЛОННЫЙ РЕАКТОР | 2007 |
|
RU2350838C1 |
ВОДОГРЕЙНЫЙ КОТЕЛ | 2007 |
|
RU2362093C1 |
УНИВЕРСАЛЬНАЯ ПЕЧЬ ВОЗДУШНОГО ОТОПЛЕНИЯ | 2019 |
|
RU2698360C1 |
СПОСОБ ПРОИЗВОДСТВА ДРЕВЕСНОГО УГЛЯ И УСТАНОВКА ДЛЯ ПРОИЗВОДСТВА ДРЕВЕСНОГО УГЛЯ | 2000 |
|
RU2166527C1 |
ТЕПЛОГЕНЕРАТОР | 2009 |
|
RU2379596C1 |
ТЕПЛОГЕНЕРАТОР | 1993 |
|
RU2079776C1 |
Изобретение относится к теплоэнергетике, а именно к области энергетического машиностроения, и позволяет обеспечить эффективность и экологичность сжигания жидкого и газообразного топлива. Устройство содержит корпус, канал рециркуляции, регулирующую заслонку и выхлопную трубу. В корпусе расположены камера сгорания, конвективный газоход и пучок дымогарных труб, охлаждаемые водяной рубашкой. Камера сгорания и конвективный газоход соединены между собой каналом рециркуляции и каналом прохода дымовых газов. Конвективный газоход совмещен с пучком дымогарных труб, на выходе из которых расположены газоход и выхлопная труба. Корпус соединен с крышкой, в которой выполнены отверстие для горелки и регулирующая заслонка, позволяющая изменять сечение для прохода дымовых газов в канале рециркуляции. В верхней части корпуса расположены патрубки, предназначенные для подвода и отвода воды. Технический результат - регулирование температуры горения и дальнобойности факела, снижение металлоемкости устройства. 4 ил.
Устройство для сжигания жидкого и газообразного топлива, содержащее корпус, канал рециркуляции, регулирующую заслонку и выхлопную трубу, отличающееся тем, что в корпусе расположены камера сгорания, конвективный газоход и пучок дымогарных труб, охлаждаемые водяной рубашкой, камера сгорания и конвективный газоход соединены между собой каналом рециркуляции и каналом прохода дымовых газов, конвективный газоход совмещен с пучком дымогарных труб, на выходе из которых расположены газоход и выхлопная труба, корпус соединен с крышкой, в которой выполнены отверстие для горелки и регулирующая заслонка, позволяющая изменять сечение для прохода дымовых газов в канале рециркуляции, в верхней части корпуса расположены патрубки, предназначенные для подвода и отвода воды.
Отопительный котел | 1972 |
|
SU568388A3 |
Рециркуляционная горелка | 1989 |
|
SU1695040A1 |
US 6305331 B1, 23.10.2001 | |||
WO 2005080869 A1, 01.09.2005 | |||
MD 20070094 A, 31.03.2009 | |||
Автоматический сцепной прибор для железнодорожных вагонов | 1927 |
|
SU8453A1 |
Авторы
Даты
2015-10-27—Публикация
2014-12-02—Подача