Изобретение относится к средствам неразрушающего контроля и может быть использовано для диагностики напряженно-деформированного состояния магистральных трубопроводов.
Известен комплекс оборудования на основе струнных датчиков СМОН [1] (Б.Н. Антипов, A.M. Ангалев, В.Л. Венгринович, Ю.П. Паньковский, В.Л. Цукерман. Оборудование для контроля напряженно-деформированного состояния трубопроводов и металлоконструкций // Оборудование и технологии для нефтегазового комплекса - 2008. - №3 - С. 66-69).
В известный комплекс входят струнные датчики деформации, блоки сопряжения, коммутационно-измерительные колонки и диспетчерский терминал.
Струнные датчики размещаются на стенках трубопровода и служат для измерения деформации и передачи информации по интерфейсу RS-485 на блоки сопряжения. Блоки сопряжения размещаются в контрольно-измерительных колонках и предназначены для съема информации с датчиков и передачи ее по общей шине на стационарный терминал постоянного мониторинга.
Недостатком известного комплекса является отсутствие прямой информации о векторе механических деформаций, возникающих в трубопроводе, что затрудняет определение угла и направления действия оползневых масс на трубопровод, что, в свою очередь, не позволяет дать точные рекомендации по строительству противооползневого защитного сооружения, ликвидирующего воздействие оползневых масс на трубопровод, и тем самым сохранить целостность трубопровода.
Кроме того, информация о напряженно-деформированном состоянии трубопровода поступает в косвенном виде, так как производится пересчет изменения частоты колебаний стальной струны датчика в изменение механического напряжения контролируемого объекта. Указанный комплекс работает в режиме посещения, что затрудняет возможность оперативного получения информации о напряженно-деформированном состоянии трубопровода.
Наиболее близкой по технической сущности и достигаемому результату к заявляемому комплексу является автоматическая станция слежения АСС, предназначенная для получения текущей информации о напряженно-деформированном состоянии трубопровода, кажущихся удельных электрических сопротивлениях и других параметрах грунтов [2] (В.А. Королев, В.Н. Брайченко, С.И. Сугак, О.В. Малахова. Мониторинг оползневых процессов на магистральных газопроводах как важный фактор стабильности работы газотранспортной системы // ОАО Газпром. Научно-технический сборник Транспорт и подземное хранение газа. - 2008 - №3 - С. 72-80).
Автоматическая станция слежения АСС состоит из герметичного контейнера и электронного блока. В электронном блоке размещены узлы сбора, преобразования, хранения, управления и передачи информации по каналу GSM-связи. Здесь же размещаются измерительные преобразователи сигналов напряженно-деформированного состояния, низкочастотный генератор питания электроразведочных установок, батареи питания. Электронный блок посредством герметичных электрических разъемов соединяется кабельными линиями с датчиками напряженно-деформированного состояния.
Для получения информации о напряженно-деформированном состоянии трубопровода датчики устанавливают в интересующих точках сечения, прикрепляя к трубе хомутами. Информация о напряженно-деформированном состоянии трубопровода поступает на сервер в режиме реального времени.
Недостатком известной станции является отсутствие прямой информации о векторе механических деформаций трубопровода, что затрудняет определение угла и направления действия оползневых масс на трубопровод, что, в свою очередь, не позволяет дать точные рекомендации по строительству противооползневого защитного сооружения, ликвидирующего воздействие оползневых масс на трубопровод и тем самым сохранить целостность трубопровода.
Задачей нашего изобретения является предоставление помимо информации о величине механического напряжения трубопровода дополнительно информации о векторе механической деформации трубопровода, а следовательно, информации об угле и направлении действия оползневых масс на трубопровод, что, в свою очередь, позволит дать точные рекомендации по строительству противооползневого защитного сооружения, ликвидирующего воздействие оползневых масс на трубопровод и тем самым сохранить целостность трубопровода.
Технический результат заключается в предотвращении разрушения трубопровода под воздействием оползневых масс.
Сущность настоящего изобретения состоит в том, что комплекс мониторинга напряженно-деформированного состояния магистральных трубопроводов, содержащий магнитошумовые датчики напряженно-деформированного состояния, герметичный контейнер, сервер, электронный блок, согласно изобретению дополнительно содержит комплект из четырех тензометрических датчиков, устанавливаемых в точках, сходных с точками установки магнитошумовых датчиков, во взаимно перпендикулярных осях с привязкой к линии горизонта, и электронный узел, с помощью которых происходит вычисление вектора механических деформаций трубопровода в плоскости установки тензометрических датчиков, а следовательно, угла и направления действия оползневых масс на трубопровод, что, в свою очередь, позволит дать точные рекомендации по строительству противооползневого защитного сооружения, ликвидирующего воздействие оползневых масс на трубопровод и тем самым сохранить целостность трубопровода.
На Фиг. 1 представлен комплекс мониторинга напряженно-деформированного состояния магистральных трубопроводов.
На Фиг. 2 показано расположение датчиков на трубопроводе в плоскости, перпендикулярной его оси.
На Фиг. 3 изображена функциональная схема измерительного узла сигналов тензодатчиков.
Комплекс мониторинга напряженно-деформированного состояния магистральных трубопроводов содержит герметичный контейнер 1, электронный блок 2, магнитошумовые датчики напряженно-деформированного состояния 3, 4, 5, 6, устанавливаемые на трубопроводе 7, GSM-канал связи 8 и сервер 9, а также содержит комплект из четырех тензометрических датчиков 10, 11, 12, 13, устанавливаемых на трубопроводе 7 и включенных в тензометрические мосты 14 и 15, куда также включаются резисторы 16, 17, 18, 19, электронный узел 20, содержащий микропроцессорное устройство 21 и входящий в электронный блок 2.
Заявляемый комплекс мониторинга напряженно-деформированного состояния магистральных трубопроводов работает следующим образом.
Магнитошумовые датчики напряженно-деформированного состояния 3, 4, 5, 6 и комплект тензометрических датчиков 10, 11, 12, 13 устанавливают на трубопроводе 7 в сечениях, расположенных максимально близко друг к другу, в точках, лежащих на взаимно перпендикулярных осях, привязанных к линии горизонта, и образуют плоскость, перпендикулярную оси трубопровода 7 (Фиг. 2). Тензометрические датчики 10, 11, 12, 13 включаются в два тензометрических моста 14 и 15 (Фиг. 3). Резисторы 16, 17 тензометрического моста 14 и резисторы 18, 19 тензометрического моста 15 размещены в дополнительном электронном узле 20. Сигналы с выходов мостов 14, 15 обрабатываются микропроцессорным устройством 21, входящим в состав дополнительного электронного узла 20. В результате в дополнительном электронном узле 20 определяется вектор деформации трубопровода 7 в плоскости установки тензометрических датчиков 10, 11, 12, 13. Информация с магнитошумовых датчиков 3, 4, 5, 6 (Фиг. 1) и дополнительного электронного узла 20 поступает в электронный блок 2, размещенный в герметичном контейнере 1, откуда по GSM-каналу связи 8 передается на сервер 9, содержащий специальное программное обеспечение. С помощью специального программного обеспечения происходит обработка данных с магнитошумовых датчиков 3, 4, 5, 6 и комплекта тензометрических датчиков 10, 11, 12, 13. В результате измерения деформации тензометрическими датчиками 10, 11, 12, 13, расположенными на двух взаимно перпендикулярных координатных осях, строится результирующий вектор деформации трубопровода 7. В итоге выдается информация о величине механического напряжения трубопровода 7 и векторе механических деформаций трубопровода 7 в плоскости установки тензометрических датчиков 10, 11, 12, 13, что позволяет определить направление и угол действия оползневых масс на трубопровод и дать точные рекомендации по строительству противооползневого сооружения, ликвидирующего воздействие оползневых масс на трубопровод и тем самым сохранить целостность трубопровода.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Б.Н. Антипов, A.M. Ангалев, В.Л. Венгринович, Ю.П. Паньковский, В.Л. Цукерман. Оборудование для контроля напряженно-деформированного состояния трубопроводов и металлоконструкций // Оборудование и технологии для нефтегазового комплекса - 2008. - №3. - С. 66-69.
2. В.А. Королев, В.Н. Брайченко, С.И. Сугак, О.В.Малахова. Мониторинг оползневых процессов на магистральных газопроводах как важный фактор стабильности работы газотранспортной системы // ОАО Газпром. Научно-технический сборник Транспорт и подземное хранение газа. - 2008. - №3. - С. 72-80.
название | год | авторы | номер документа |
---|---|---|---|
КОМПЛЕКС МОНИТОРИНГА ЗА ИЗМЕРЕНИЕМ ГЕОМЕТРИИ И УРОВНЯМИ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ | 2019 |
|
RU2727115C1 |
КОМПЛЕКС МОНИТОРИНГА И РЕГУЛИРОВКИ НАПРЯЖЁННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ТРУБОПРОВОДОВ ВАНТОВЫХ НАДЗЕМНЫХ ПЕРЕХОДОВ | 2017 |
|
RU2667604C1 |
СПОСОБ КОМПЛЕКСНОЙ ОЦЕНКИ ПОКАЗАТЕЛЕЙ, ОПРЕДЕЛЯЮЩИХ ТЕХНИЧЕСКОЕ СОСТОЯНИЕ ТРУБОПРОВОДНЫХ СИСТЕМ, И СИСТЕМА МОНИТОРИНГА ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2020 |
|
RU2767263C1 |
ПРОТИВООПОЛЗНЕВОЕ ЗАЩИТНОЕ СООРУЖЕНИЕ С ИНТЕРАКТИВНОЙ СИСТЕМОЙ МОНИТОРИНГА | 2018 |
|
RU2685580C1 |
СПОСОБ МОНИТОРИНГА И ОЦЕНКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ МАГИСТРАЛЬНОГО ТРУБОПРОВОДА И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2011 |
|
RU2451874C1 |
АВТОМАТИЗИРОВАННАЯ КОМПЛЕКСНАЯ СИСТЕМА МОНИТОРИНГА УДАЛЕННЫХ ОБЪЕКТОВ И СПОСОБ МОНИТОРИНГА УДАЛЕННЫХ ОБЪЕКТОВ | 2023 |
|
RU2820412C1 |
Способ автоматического дистанционного мониторинга накопления остаточных деформаций и колебаний тепло-влажностного режима элементов дорожных конструкций в реальных условиях эксплуатации | 2019 |
|
RU2710901C1 |
ПРОТИВООПОЛЗНЕВОЕ ЗАЩИТНОЕ СООРУЖЕНИЕ | 2012 |
|
RU2524225C2 |
Способ мониторинга и прогнозирования оползневой опасности | 2018 |
|
RU2686383C1 |
Информационно-аналитическая система мониторинга механической безопасности конструкций сложного инженерного сооружения | 2020 |
|
RU2751053C1 |
Изобретение относится к средствам неразрушающего контроля и может быть использовано для диагностики напряженно-деформированного состояния магистральных трубопроводов. Комплекс содержит герметичный контейнер 1, GSV-канал связи 8, сервер 9, электронный блок 2, магнитошумовые датчики 3,4,5,6 напряженно-деформированного состояния. На боковых образующих трубопровода во взаимно перпендикулярных осях с привязкой к линии горизонта устанавливают четыре тензометрических датчика 10,11,12,13 в точках, сходных с точками установки магнитошумовых датчиков. Комплект из четырех тензометрических датчиков связан с электронным узлом 20, входящим в электронный блок 2. С помощью электронного узла происходит вычисление вектора механических деформаций трубопровода в плоскости установки тензометрических датчиков и определение угла и направления действия оползневых масс на трубопровод. Достигается предотвращение разрушения трубопровода. 3 ил.
Комплекс мониторинга напряженно-деформированного состояния магистральных трубопроводов, содержащий устанавливаемые на трубопроводе магнитошумовые датчики напряженно-деформированного состояния, связанные с электронным блоком, размещенным в герметичном контейнере, и сервер, отличающийся тем, что он снабжен электронным узлом, входящим в электронный блок, и связанным с электронным узлом комплектом из четырех тензометрических датчиков, устанавливаемых на трубопроводе в точках, сходных с точками установки магнитошумовых датчиков, во взаимно перпендикулярных осях с привязкой к линии горизонта, при этом электронный узел выполнен с возможностью осуществления вычисления вектора механических деформаций трубопровода в плоскости установки тензометрических датчиков.
Транспорт и подземное хранение газа | |||
Научно-технический сборник | |||
ОАО Газпром, 2008, N3, с | |||
Термосно-паровая кухня | 1921 |
|
SU72A1 |
Авторы
Даты
2015-11-10—Публикация
2014-03-04—Подача