КОМПЛЕКС МОНИТОРИНГА ЗА ИЗМЕРЕНИЕМ ГЕОМЕТРИИ И УРОВНЯМИ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ Российский патент 2020 года по МПК F17D5/00 

Описание патента на изобретение RU2727115C1

Изобретение относится к мониторингу состояния магистральных трубопроводов и может быть использовано для отслеживания изменений их геометрии, а также уровней напряженно-деформированного состояния.

Известна автоматическая станция слежения АСС, предназначенная для получения текущей информации о напряженно-деформированном состоянии трубопровода, кажущихся удельных электрических сопротивлениях и других параметрах грунтов. [1] (В.А. Королёв, В.Н. Брайченко, С.И. Сугак, О.В. Малахова. Мониторинг оползневых процессов на магистральных газопроводах как важный фактор стабильности работы газотранспортной системы // ОАО Газпром Научно-технический сборник Транспорт и подземное хранение газа. - 2008 - №3. - С. 72-80.)

Автоматическая станция слежения АСС состоит из герметичного контейнера и электронного блока. В электронном блоке размещены узлы сбора, преобразования, хранения, управления и передачи информации по каналу GSM-связи. Здесь же размещаются измерительные преобразователи сигналов напряженно-деформированного состояния (НДС), низкочастотный генератор питания электроразведочных установок, батареи питания. Электронный блок посредством герметичных электрических разъемов соединяется кабельными линиями с датчиками напряженно-деформированного состояния.

Для получения информации о НДС трубопровода датчики устанавливают в интересующих точках сечения и крепятся к трубе хомутами. Информация о НДС трубопровода поступает на сервер в режиме реального времени.

Недостатком известной станции является отсутствие прямой информации о векторе механических деформаций трубопровода и изменении его геометрии, что затрудняет определение угла и направления действия оползневых масс на трубопровод, что, в свою очередь, не позволяет дать точные рекомендации для принятия защитных мер по сохранению целостности трубопровода.

Известен «Комплекс мониторинга напряженно-деформированного состояния магистральных трубопроводов» (патент РФ на изобретение №2568232), являющийся наиболее близким по технической сути и достигаемому результату.

Известный комплекс мониторинга напряженно-деформированного состояния магистральных трубопроводов состоит из блока датчиков, состоящего из четырех магнитошумовых датчиков НДС трубопровода, четырех тензометрических датчиков, устанавливаемых в точках, сходных с точками установки магнитошумовых датчиков НДС, во взаимно перпендикулярных осях с привязкой к линии горизонта, блока сбора и передачи данных (состоит из герметичного контейнера и электронных блоков), а также сервера с программным обеспечением, с помощью которого происходит вычисление вектора механических деформаций трубопровода в плоскости установки тензометрических датчиков. Недостатком известного комплекса является отсутствие информации о реальной геометрии и положении в пространстве трубопровода, что не позволяет дать точные рекомендации для принятия защитных мер по сохранению целостности трубопровода.

Задачей настоящего изобретения является получение информации (помимо информации о величине НДС трубопровода, о векторе механической деформации трубопровода) об изменении геометрии и положении трубопровода в пространстве.

Указанная цель достигается за счет:

- установки на трубопроводе, в заданных сечениях, блоков акселерометров, рядом с датчиками НДС и тензометрическими датчиками;

- установки на границах участка мониторинга, в неподверженных оползневым явлениям грунтах (в коренных породах) двух скользящих опор, на каждой из которых установлен блок акселерометров с нулевыми показаниями;

- программного обеспечения, обрабатывающего в режиме реального времени информацию с блоков акселерометров, преобразующего ее в 3-D визуализацию геометрии трубопровода и его положения в пространстве, а информацию с датчиков НДС и тензометрических датчиков в информацию об уровнях НДС, и о направлении изгибающего вектора.

Сущность настоящего изобретения состоит в том, что комплекс мониторинга за изменением геометрии и уровнями напряженно-деформированного состояния (далее - НДС) магистральных трубопроводов, содержащий комплект тензометрических датчиков и датчиков НДС, блок сбора и передачи данных, а также сервер с программным обеспечением, согласно изобретению, дополнительно содержит установленные на трубопроводе в заданных сечениях, рядом с тензометрическими датчиками и датчиками НДС, блоки акселерометров, информацию с которых программное обеспечение комплекса преобразует в 3-D визуализацию геометрии трубопровода в пространстве, а установленные на границах участка мониторинга, в грунтах не подверженных оползневым явлениям две скользящие опоры, не препятствующие подвижкам трубопровода под воздействием оползневых масс, являются неподвижной базой для установленных на них блоков акселерометров, относительно которых производится отсчет изменения геометрии трубопровода.

На фиг. 1 представлен вид сверху на комплекс мониторинга за изменением геометрии и уровнями напряженно-деформированного состояния магистральных трубопроводов, а на фиг. 2 показано сечение трубопровода, где:

1- трубопровод;

2- тензометрический датчик;

3- датчик НДС;

4- блок акселерометров;

5- блок сбора и передачи данных;

6- кабель;

7- кабель;

8- кабель;

9- скользящая опора;

10- оползневые массы;

11- сервер

На трубопровод 1, по периметру заданных поперечных сечений, устанавливаются блоки датчиков, состоящие из четырех тензометрических датчиков 2, четырех датчиков НДС 3 и одного блока акселерометров 4 (в каждом сечении - см. фиг. 2). Тензометрические датчики 2 соединены между собой и с блоком сбора и передачи данных 5 кабелем 6. Датчики НДС 3 соединены между собой и с блоком сбора и передачи данных 5 кабелем 7. Блоки акселерометров 4 соединены между собой и с блоком сбора и передачи данных 5 кабелем 8.

На границах участка мониторинга, в неподверженных оползневым явлениям грунтах (в коренных породах) установлены две скользящие опоры 9, не препятствующие подвижкам трубопровода 1 под воздействием оползневых масс 10, являются неподвижной базой для установленных на них блоков акселерометров 4, относительно которых производится отсчет изменения геометрии трубопровода 1.

Следует отметить, что данный комплекс может быть реализован и по беспроводной схеме.

Заявляемый комплекс мониторинга за изменением геометрии и уровнями напряженно-деформированного состояния магистральных трубопроводов работает следующим образом.

После монтажа комплекса на трубопроводе 1 выставляются нулевые значения на блоках акселерометров 4, установленных как на трубопроводе 1, так и на скользящих опорах 9. Нулевые показания на блоках акселерометров 4, установленных на скользящих опорах 9 являются нулевой базой, от которой отсчитываются изменения показаний блоков акселерометров 4, установленных как на трубопроводе 1, при изменении его геометрии.

Под действием оползневых масс 10, либо иных природных явлений, происходит изменение геометрии трубопровода 1 и как следствие -изменение уровней НДС на отдельных участках трубопровода 1 до критических значений.

Информация с тензометрических датчиков 2, датчиков НДС 3 и блоков акселерометров 4, установленных в заданных сечениях на трубопроводе 1, поступает в блок сбора и передачи данных 5 и дистанционно передается на сервер 11. Программное обеспечение сервера 11 обрабатывает полученную информацию об уровнях НДС в заданных сечениях трубопровода 1, преобразует сигналы с тензометрических датчиков 2 в информацию о направлении изгибающего вектора, а информацию с блоков акселерометров 4, установленных на трубопроводе 1 в 3-D визуализацию его формы с положением в пространстве.

Таким образом, у оператора сервера 11 в режиме реального времени имеется 3-D модель состояния трубопровода 1, содержащая:

- данные об уровнях НДС в местах установки датчиков НДС 3;

- направления векторов изгиба в местах установки тензометрических датчиков 2.

Полученная информация позволяет дать точные рекомендации для принятия защитных мер по сохранению целостности трубопровода.

ИСТОЧНИКИ ИНФОРМАЦИИ:

1. В.А. Королёв, В.Н. Брайченко, С.И. Сугак, О.В. Малахова. Мониторинг оползневых процессов на магистральных газопроводах как важный фактор стабильности работы газотранспортной системы // ОАО Газпром Научно-технический сборник Транспорт и подземное хранение газа. - 2008. - №3. - С. 72-80.

2. Патент РФ на изобретение №2568232 «Комплекс мониторинга напряженно-деформированного состояния магистральных трубопроводов».

Похожие патенты RU2727115C1

название год авторы номер документа
КОМПЛЕКС МОНИТОРИНГА И РЕГУЛИРОВКИ НАПРЯЖЁННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ТРУБОПРОВОДОВ ВАНТОВЫХ НАДЗЕМНЫХ ПЕРЕХОДОВ 2017
  • Ткаченко Игорь Григорьевич
  • Шабля Сергей Геннадьевич
  • Твардиевич Сергей Вячеславович
  • Шумский Борис Геннадьевич
  • Бачалов Сергей Владимирович
  • Шатохин Александр Анатольевич
  • Петрук Вячеслав Петрович
  • Масленников Александр Борисович
  • Ившин Владимир Геннадьевич
  • Пушкин Сергей Викторович
  • Гераськин Вадим Георгиевич
  • Кислун Алексей Андреевич
  • Шабров Сергей Николаевич
  • Шабров Пётр Николаевич
RU2667604C1
КОМПЛЕКС МОНИТОРИНГА НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ 2014
  • Ткаченко Игорь Григорьевич
  • Сусликов Сергей Петрович
  • Гераськин Вадим Георгиевич
  • Кислун Алексей Андреевич
  • Шабров Сергей Николаевич
  • Грищенко Виталий Степанович
  • Попрядухин Сергей Петрович
RU2568232C2
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПЛАНОВО-ВЫСОТНОГО ПОЛОЖЕНИЯ ПОДЗЕМНЫХ ТРУБОПРОВОДОВ 2018
  • Ткаченко Игорь Григорьевич
  • Шабля Сергей Геннадьевич
  • Твардиевич Сергей Вячеславович
  • Шатохин Александр Анатольевич
  • Колесниченко Сергей Иванович
  • Кислун Алексей Андреевич
  • Шабров Сергей Николаевич
  • Шабров Пётр Николаевич
RU2713998C1
ИНТЕРАКТИВНАЯ СИСТЕМА МОНИТОРИНГА ТЕХНИЧЕСКОГО СОСТОЯНИЯ МАГИСТРАЛЬНОГО ТРУБОПРОВОДА НА УЧАСТКАХ НАДЗЕМНЫХ ПЕРЕХОДОВ 2013
  • Ткаченко Игорь Григорьевич
  • Сусликов Сергей Петрович
  • Гераськин Вадим Георгиевич
  • Кислун Алексей Андреевич
  • Шабров Сергей Николаевич
  • Шабров Пётр Николаевич
RU2556335C1
СПОСОБ КОНТРОЛЯ СОСТОЯНИЯ АНТЕННО-МАЧТОВЫХ СООРУЖЕНИЙ 2016
  • Ткаченко Игорь Григорьевич
  • Сусликов Сергей Петрович
  • Гурьев Вадим Петрович
  • Шатохин Александр Анатольевич
  • Янко Тимофей Николаевич
  • Гераськин Вадим Георгиевич
  • Кислун Алексей Андреевич
  • Киселёв Юрий Васильевич
  • Шабров Сергей Николаевич
  • Шабров Пётр Николаевич
  • Шмандий Пётр Михайлович
RU2626069C1
ПРОТИВООПОЛЗНЕВОЕ ЗАЩИТНОЕ СООРУЖЕНИЕ С ИНТЕРАКТИВНОЙ СИСТЕМОЙ МОНИТОРИНГА 2018
  • Ткаченко Игорь Григорьевич
  • Шабля Сергей Геннадьевич
  • Твардиевич Сергей Вячеславович
  • Бачалов Сергей Владимирович
  • Шатохин Александр Анатольевич
  • Масленников Александр Борисович
  • Ившин Владимир Геннадьевич
  • Пушкин Сергей Викторович
  • Гераськин Вадим Георгиевич
  • Кислун Алексей Андреевич
  • Шабров Сергей Николаевич
  • Шабров Пётр Николаевич
  • Кульчицкий Евгений Владимирович
RU2685580C1
ПРОТИВООПОЛЗНЕВОЕ ЗАЩИТНОЕ СООРУЖЕНИЕ 2012
  • Сусликов Сергей Петрович
  • Кобелева Надежда Ивановна
  • Гурьев Вадим Петрович
  • Колтаков Андрей Анатольевич
  • Твардиевич Сергей Вячеславович
  • Пушкин Сергей Викторович
  • Гераськин Вадим Георгиевич
  • Кислун Алексей Андреевич
  • Носач Геннадий Николаевич
  • Шабров Сергей Николаевич
  • Шабров Пётр Николаевич
  • Кульчицкий Владимир Николаевич
RU2524225C2
Способ контроля антенно-мачтовых сооружений 2019
  • Бурдин Владимир Александрович
  • Нижгородов Антон Олегович
  • Карлов Кирилл Рудольфович
  • Ракитин Сергей Александрович
RU2705934C1
Способ мониторинга и прогнозирования оползневой опасности 2018
  • Задериголова Михаил Михайлович
  • Малышков Сергей Юрьевич
  • Коновалов Юлий Федорович
  • Гордеев Василий Федорович
  • Бильтаев Саид-Хусейн Дукваевич
  • Горбатов Валерий Иванович
RU2686383C1
СПОСОБ МОНИТОРИНГА ТЕХНИЧЕСКОГО СОСТОЯНИЯ ТРУБОПРОВОДОВ НАДЗЕМНОЙ ПРОКЛАДКИ В УСЛОВИЯХ ВЕЧНОЙ МЕРЗЛОТЫ 2015
  • Ревель-Муроз Павел Александрович
  • Могильнер Леонид Юрьевич
  • Татауров Сергей Борисович
RU2571497C1

Иллюстрации к изобретению RU 2 727 115 C1

Реферат патента 2020 года КОМПЛЕКС МОНИТОРИНГА ЗА ИЗМЕРЕНИЕМ ГЕОМЕТРИИ И УРОВНЯМИ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ

Изобретение относится к мониторингу состояния магистральных трубопроводов и может быть использовано для отслеживания изменений их геометрии, а также уровней напряженно-деформированного состояния. Задачей настоящего изобретения является получение информации (помимо информации о величине НДС трубопровода, о векторе механической деформации трубопровода) об изменении геометрии и положении трубопровода в пространстве. Цель достигается за счет установки на трубопроводе, в заданных сечениях, блоков акселерометров, рядом с датчиками НДС и тензометрическими датчиками; установки на границах участка мониторинга, на грунтах, не подверженных оползневым явлениям (в коренных породах), двух скользящих опор, на каждой из которых установлен блок акселерометров с нулевыми показаниями; программного обеспечения, обрабатывающего в режиме реального времени информацию с блоков акселерометров, преобразующего ее в 3-D визуализацию геометрии трубопровода и его положения в пространстве, а информацию с датчиков НДС и тензометрических датчиков в информацию об уровнях НДС, и о направлении изгибающего вектора. Полученная посредством данного комплекса информация позволяет дать точные рекомендации для принятия защитных мер по сохранению целостности трубопровода и минимизации воздействия НДС. 2 ил.

Формула изобретения RU 2 727 115 C1

Комплекс мониторинга за изменением геометрии и уровнями напряженно-деформированного состояния (далее - НДС) магистральных трубопроводов, содержащий комплект тензометрических датчиков и датчиков НДС, блок сбора и передачи данных, а также сервер с программным обеспечением, отличающийся тем, что дополнительно содержит установленные на трубопроводе в заданных сечениях, рядом с тензометрическими датчиками и датчиками НДС, блоки акселерометров, информацию с которых программное обеспечение комплекса преобразует в 3-D визуализацию геометрии трубопровода в пространстве, а установленные на границах участка мониторинга, в грунтах, неподверженных оползневым явлениям, две скользящие опоры, не препятствующие подвижкам трубопровода под воздействием оползневых масс, являются неподвижной базой для установленных на них блоков акселерометров, относительно которых производится отсчет изменения геометрии трубопровода.

Документы, цитированные в отчете о поиске Патент 2020 года RU2727115C1

КОМПЛЕКС МОНИТОРИНГА НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ 2014
  • Ткаченко Игорь Григорьевич
  • Сусликов Сергей Петрович
  • Гераськин Вадим Георгиевич
  • Кислун Алексей Андреевич
  • Шабров Сергей Николаевич
  • Грищенко Виталий Степанович
  • Попрядухин Сергей Петрович
RU2568232C2
СПОСОБ ДИСТАНЦИОННОГО КОНТРОЛЯ И ДИАГНОСТИКИ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ КОНСТРУКЦИИ ТРУБОПРОВОДОВ 2011
  • Гарифуллин Наиль Миниахметович
  • Сулейманов Наиль Тимирзянович
  • Максимочкин Валерий Иванович
  • Королев Владимир Алексеевич
RU2474754C1
Приспособление к протяжному станку 1957
  • Юдович Л.Г.
SU111609A1
ИНТЕРАКТИВНАЯ СИСТЕМА МОНИТОРИНГА ТЕХНИЧЕСКОГО СОСТОЯНИЯ МАГИСТРАЛЬНОГО ТРУБОПРОВОДА НА УЧАСТКАХ НАДЗЕМНЫХ ПЕРЕХОДОВ 2013
  • Ткаченко Игорь Григорьевич
  • Сусликов Сергей Петрович
  • Гераськин Вадим Георгиевич
  • Кислун Алексей Андреевич
  • Шабров Сергей Николаевич
  • Шабров Пётр Николаевич
RU2556335C1
WO 2014091513 A2, 19.06.2014.

RU 2 727 115 C1

Авторы

Ткаченко Игорь Григорьевич

Шабля Сергей Геннадьевич

Твардиевич Сергей Вячеславович

Масленников Александр Борисович

Колесниченко Сергей Иванович

Кислун Алексей Андреевич

Шабров Сергей Николаевич

Шабров Пётр Николаевич

Даты

2020-07-20Публикация

2019-03-26Подача