Изобретение относится к области исследования характеристик высокоэнергетических материалов (ВЭМ), в частности к определению одной из основных характеристик зажигания ВЭМ лучистым тепловым потоком - времени задержки зажигания [1]. Изобретение может быть использовано для определения зависимости времени задержки зажигания твердых ракетных топлив, взрывчатых веществ и других ВЭМ от уровня теплового потока, компонентного состава и размеров образцов ВЭМ, диаметра пучка излучения и т.д.
Зависимости времени задержки зажигания от указанных параметров играют важную роль при оценке взрывобезопасности ВЭМ, а также при разработке систем их инициирования (воспламенители, взрыватели, детонаторы и т.д.).
Известен способ измерения времени задержки зажигания ВЭМ заданным постоянным лучистым тепловым потоком ксеноновой лампы [2]. Время задержки зажигания определяют промежутком времени между открытием оптического затвора и моментом появления пламени на поверхности образца ВЭМ, регистрируемым ионизационным датчиком и фотодиодом.
Известен способ измерения времени задержки зажигания ВЭМ излучением СO2-лазера, фокусируемым на поверхности образца линзой из хлорида натрия [3].
Данные способы позволяют проводить измерения времени задержки зажигания только при воздействии теплового потока с заданной постоянной интенсивностью. В то же время, как показывают результаты экспериментальных и теоретических исследований [4, 5], характеристики зажигания ВЭМ существенно зависят от динамики изменения плотности теплового потока в процессе инициирования ВЭМ. Закономерности зажигания ВЭМ тепловым потоком с убывающей или возрастающей интенсивностью представляют интерес не только в плане дальнейшего развития тепловой теории зажигания, но и важны в практических приложениях, поскольку в реальных условиях, как правило, теплообмен при зажигании является нестационарным, то есть осуществляется в динамическом режиме.
Наиболее близким по технической сущности является способ исследования процесса зажигания ВЭМ при динамических условиях подвода лучистой энергии [6]. В качестве источника излучения в данном способе используется трубчатая газоразрядная ксеноновая лампа. При открытии оптического затвора плотность лучистого теплового потока изменяют за счет изменения силы тока в цепи питания лампы с помощью специального тиристорного блока.
Техническим результатом настоящего изобретения является разработка способа определения характеристик зажигания образцов ВЭМ при изменении плотности теплового потока в период инициирования по заранее заданной зависимости от времени.
Технический результат достигается тем, что разработан способ определения характеристик зажигания образцов высокоэнергетических материалов лучистым тепловым потоком, включающий измерение времени задержки зажигания при подаче на поверхность образца теплового потока. Перед образцом устанавливают собирающую линзу с возможностью ее продольного перемещения, а на облученной поверхности образца размещают диафрагму с отверстием, центр которого расположен на оптической оси линзы. Одновременно с подачей теплового потока линзу перемещают относительно образца, а радиус отверстия диафрагмы определяют по формуле
Переменную плотность теплового потока, воздействующего на образец в течение времени t=0÷tk рассчитывают по формуле
при перемещении линзы от образца или по формуле
при перемещении линзы по направлению к образцу.
Значения lmax, lmin, f выбирают в соответствии с неравенством
Здесь R, f - радиус и фокусное расстояние линзы; lmax, lmin - максимальное и минимальное расстояния между линзой и поверхностью образца; Q - лучистый тепловой поток, поступающий на линзу; u, tk - скорость и конечное время перемещения линзы.
Полученный положительный эффект изобретения связан со следующими факторами.
1. Установка перед исследуемым образцом ВЭМ собирающей линзы с возможностью ее продольного перемещения относительно образца позволяет изменять плотность лучистого теплового потока в плоскости размещения образца. Радиус пучка излучения r в зависимости от расстояния l от линзы до плоскости размещения образца А-А и от радиуса начального пучка R (радиуса линзы) определяется линейной зависимостью (Фиг. 1)
где f - фокусное расстояние линзы.
Плотность потока излучения в плоскости А-А равна
где Q - тепловой поток, поступающий на линзу.
В соответствии с формулой (2) изменением расстояния l можно варьировать плотность теплового потока q.
2. Размещение на облучаемой поверхности образца диафрагмы с отверстием радиусом r0 обеспечивает постоянство величины площади сечения пучка излучения S0, поступающего на образец
что обеспечивает идентичность условий облучения при изменении расстояния l от поверхности образца до линзы.
3. Определение радиуса отверстия диафрагмы по формуле
обеспечивает максимальное значение плотности теплового потока на поверхности образца, размещенного на максимальном расстоянии lmax от линзы. При l<lmax (приближение линзы к образцу), величина q будет уменьшаться.
4. При перемещении линзы относительно образца с постоянной скоростью u, расстояние от линзы до облучаемой поверхности образца будет изменяться:
- при удалении линзы от образца
- при приближении линзы к образцу
Подставляя (5, 6) в формулу (2), получим зависимости плотности теплового потока от времени:
- при удалении линзы от образца
- при приближении линзы к образцу
5. Выбор значений lmax, lmin в соответствии с неравенством
обеспечивает размещение облучаемой поверхности образца перед фокусом линзы (Фиг. 1).
Пример реализации заявляемого изобретения приведен на Фиг. 2. На линзу радиусом R=1 см с фокусным расстоянием f=150 см подается равномерный поток излучения CO2-лазера с длиной волны λ=10.6 мкм и с постоянной интенсивностью Q=100 Вт. На поверхности образца ВЭМ (плоскость А-А) установлена диафрагма с радиусом отверстия r0=0.2 см. Перемещение линзы относительно образца происходит с постоянной скоростью u=1 м·с-1. Максимальное и минимальное расстояния от линзы до образца составляют fmax=120 см, fmin=30 см.
Результаты расчетов зависимости радиуса пучка излучения r и плотности теплового потока q от расстояния l, проведенных по формулам (1, 2), приведены на Фиг. 3.
Зависимости плотности теплового потока от времени для данных условий, рассчитанные по формулам (7, 8), приведены на Фиг. 4 для двух вариантов: удаление линзы от образца и приближение линзы к образцу.
Схема экспериментальной установки для реализации предлагаемого способа приведена на Фиг. 5.
Излучение CO2-лазера (1) при открытии затвора центрального типа (6) подавалось на исследуемый образец ВЭМ (9) системой зеркал (3) и линзой (4) из хлорида натрия, перемещающейся относительно образца. Время задержки зажигания образца ВЭМ определялось по сигналам двух фотодиодов ФД-9 (7), один из которых при открытии затвора включал развертку запоминающего осциллографа Owon PDS 5022 S (8), второй регистрировал появление пламени на поверхности образца ВЭМ. Время воздействия лазерного излучения на образец ВЭМ (9) варьировалось в диапазоне 30÷1500 мс и определялось из условия зажигания ВЭМ при постоянном лучистом тепловом потоке [2]. Для визуализации процесса зажигания ВЭМ, а также для определения скорости и времени движения линзы использовалась видеокамера (2). Тепловой поток излучения Q, падающего на образец ВЭМ, измерялся измерителем средней мощности излучения (5) марки ИМО-2, основная приведенная погрешность измерения мощности излучения составляла 5%.
Результаты измерения плотности лучистого теплового потока в зависимости от расстояния l от линзы до поверхности образца ВЭМ, осредненные по трем дублирующим опытам, приведены на Фиг. 3. Расчетные значения q(l), приведенные на Фиг. 3, удовлетворительно согласуются с экспериментальными данными (расхождение не превышает 5÷7%).
Таким образом, как видно из приведенного примера, при реализации предлагаемого способа достигается положительный эффект, заключающийся в следующем.
1. Способ позволяет определять время задержки зажигания образцов ВЭМ как при убывающей, так и при возрастающей плотности лучистого теплового потока на поверхности образца.
2. Изменяя скорость перемещения линзы относительно образца, можно варьировать динамические характеристики теплового потока.
3. При варьировании геометрических характеристик оптической системы (радиус и фокусное расстояние линзы, радиус отверстия диафрагмы) можно проводить измерения характеристик зажигания образцов ВЭМ в широком диапазоне значений определяющих параметров.
ЛИТЕРАТУРА
1. Вилюнов В.Н. Теория зажигания конденсированных веществ / В.Н. Вилюнов. - Новосибирск: Наука, 1984. - 189 с.
2. Влияние дисперсности порошков металлов на характеристики кондуктивного и лучистого зажигания смесевых композиций / В.А. Архипов, А.Г. Коротких, В.Т. Кузнецов, Е.С. Синогина // Химическая физика. - 2007. - Т. 26, №6. - С. 58-67.
3. Ballistic properties of solid rocket propellants based on dual-oxidizer (ammonium perchlorate and ammonium nitrate) mixtures / L.T. De Luca, L. Galfetti, F. Severini et al. // Progress in Combustion and Detonation. - Moscow: TORUS PRESS Ltd., 2004. - P. 151-152.
4. Мержанов А.Г. Современное состояние тепловой теории зажигания / А.Г. Мержанов, А.Э. Аверсон // Препринт ИХФ АН СССР. - М., 1970. - 62 с.
5. Гусаченко Л.К. Зажигание и гашение гомогенных энергетических материалов световым импульсом / Л.К. Гусаченко, В.Е. Зарко, А.Д. Рычков // Физика горения и взрыва. - 2012. - Т. 48, №1. - С. 80-88.
6. Экспериментальное исследование процесса зажигания конденсированных веществ при динамических условиях подвода лучистой энергии / Р.Ш. Еналеев, В.А. Матеосов, К.И. Синаев и др. // Физика горения и методы ее исследования: сб. статей. - Чебоксары: Чувашский государственный университет, 1973. - С. 80-86.
название | год | авторы | номер документа |
---|---|---|---|
Способ определения характеристик зажигания образцов высокоэнергетических материалов лазерным излучением | 2020 |
|
RU2737676C1 |
СПОСОБ ОПТИЧЕСКОЙ ОБРАБОТКИ ИЗОБРАЖЕНИЯ И ОПТИЧЕСКАЯ СИСТЕМА ДЛЯ НЕГО | 2010 |
|
RU2429509C1 |
Способ определения радиуса эффективного пятна облучения | 1989 |
|
SU1685146A1 |
ОПТИКО-ЭЛЕКТРОННАЯ СИСТЕМА ДЛЯ НАСТРОЙКИ И ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ БУМАГОДЕЛАТЕЛЬНЫХ МАШИН (ВАРИАНТЫ) | 2005 |
|
RU2294997C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОЙ ЭНЕРГЕТИЧЕСКОЙ ОБЛУЧЕННОСТИ ДИСПЕРСНЫХ ПИЩЕВЫХ МАТЕРИАЛОВ | 2007 |
|
RU2380006C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК ДИСПЕРСНЫХ ПИЩЕВЫХ ПРОДУКТОВ | 2008 |
|
RU2378957C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕГРАЛЬНОЙ ПОГЛОЩАТЕЛЬНОЙ СПОСОБНОСТИ ДИСПЕРСНЫХ ПИЩЕВЫХ ПРОДУКТОВ | 2009 |
|
RU2405396C1 |
Способ изготовления микролинзового оптического растра | 1987 |
|
SU1610791A1 |
ЛАЗЕРНЫЙ ЦЕНТРАТОР ДЛЯ РЕНТГЕНОВСКОГО ИЗЛУЧАТЕЛЯ | 2010 |
|
RU2421950C1 |
ЛАЗЕРНЫЙ ЦЕНТРАТОР ДЛЯ РЕНТГЕНОВСКОГО ИЗЛУЧАТЕЛЯ | 2010 |
|
RU2421948C1 |
Изобретение относится к области исследования характеристик высокоэнергетических материалов (ВЭМ) и может быть использовано для определения времени задержки зажигания ВЭМ лучистым тепловым потоком. Способ заключается в непосредственном измерении времени задержки зажигания ВЭМ, на поверхность которого подается лучистый тепловой поток через собирающую линзу, перемещающуюся с заданной скоростью относительно образца в процессе измерения. Зависимость теплового потока от времени рассчитывается по алгебраическим формулам для заданных геометрических параметров оптической системы. Технический результат - повышение точности определения времени задержки зажигания при воздействии на образец ВЭМ динамического теплового потока с возрастающей или убывающей интенсивностью. 5 ил.
Способ определения характеристик зажигания образцов высокоэнергетических материалов лучистым тепловым потоком, включающий измерение времени задержки зажигания при подаче на поверхность образца теплового потока, отличающийся тем, что перед образцом устанавливают собирающую линзу с возможностью ее продольного перемещения, на облученной поверхности образца размещают диафрагму с отверстием, центр которого расположен на оптической оси линзы, одновременно с подачей теплового потока линзу перемещают относительно образца, радиус отверстия диафрагмы определяют по формуле
переменную плотность теплового потока, воздействующего на образец в течение времени t=0÷tk, рассчитывают по формуле
при перемещении линзы от образца или по формуле
при перемещении линзы по направлению к образцу, а значения lmax, lmin, f выбирают в соответствии с неравенством
где R, f - радиус и фокусное расстояние линзы; lmax, lmin - максимальное и минимальное расстояния между линзой и поверхностью образца; Q - лучистый тепловой поток, поступающий на линзу; u, tk - скорость и конечное время перемещения линзы.
АРХИПОВ В.А., КОРОТКИХ А.Г., КУЗНЕЦОВ В.Т., РАЗДОБРЕЕВ А.А., ЕВСЕНКО И.А., "ВЛИЯНИЕ ДИСПЕРСНОСТИ ПОРОШКА АЛЮМИНИЯ НА ХАРАКТЕРИСТИКИ ЗАЖИГАНИЯ СМЕСЕВЫХ КОМПОЗИЦИЙ ЛАЗЕРНЫМ ИЗЛУЧЕНИЕМ", ж-л "Химическая физика", 2011, том 30, N7, с.68-76 | |||
Устройство для опеределения параметров воспламенения и горения материалов | 1977 |
|
SU635415A1 |
Устройство для оценки пожарной опасности твердых материалов | 1981 |
|
SU979975A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЕЙ ПОЖАРООПАСНОСТИ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1989 |
|
RU2035728C1 |
US 7645069 B1, 12.01.2010. |
Авторы
Даты
2015-11-27—Публикация
2014-07-08—Подача