СПОСОБ ИЗМЕРЕНИЯ ВЛАЖНОСТИ ДРЕВЕСИНЫ С ИСПОЛЬЗОВАНИЕМ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ Российский патент 2015 года по МПК G01N21/3554 

Описание патента на изобретение RU2569946C1

Изобретение относится к измерительной технике и может быть использовано для измерения влажности древесины в процессе сушки и хранения.

В процессе сушки древесины необходим периодический или непрерывный контроль влажности древесины для выбора оптимального режима. При сушке наиболее быстро испаряется влага с поверхности и из наружных слоев древесины. Из внутренних зон к наружным влага поступает медленнее, что приводит к образованию внутренних напряжений, которые ведут к образованию трещин и короблению.

Влажность древесины в процессе сушки контролируют весовым способом по контрольным образцам. Образец влажности высушивают вплоть до стабилизации веса. Через равные промежутки времени проводят взвешивание контрольных образцов. Если последний вес совпадает с предыдущим или отличается от него не более чем на 0,02 г, то его принимают за вес абсолютно сухого образца и сушку заканчивают. После определения веса образца, из которого была устранена влажность, проводят расчет влажности [ГОСТ-16588-91].

Весовой метод простой, надежный и точный, но имеет недостатки - довольно продолжительную процедуру, измерение градиента влажности возможно только распиловкой на секции.

Наибольшее распространение получили кондуктометрические методы, измеряющие электропроводность древесины. Электроды кондуктометрического влагомера устанавливают внутри древесины на фиксированном расстоянии. Создают электрическое поле и определяют электропроводность межэлектродного промежутка в зависимости от влажности. Зависимость электропроводности от влажности определяется заранее для конкретной породы древесины [Лапшин А.А. Электрические влагомеры. - М.: Госэнергоиздат, 1960. - С. 15-20].

Недостатками кондуктометрических способов измерения влажности являются невозможность нормирования показаний влажности влагомеров данного типа выше 30%, а также то, что эти способы невозможно использовать для измерения влажности в процессе сушки древесины под воздействием электромагнитного поля, так как под действием токов Фуко происходит нагрев электродов, что приводит к ошибке измерений.

Известен способ [RU патент ПМ №80955, G01N 21/81, опубл. 27.02.2009], заключающийся в формировании источником инфракрасного излучения двух потоков лучей, которые, проходя через прозрачную кювету с измеряемой жидкостью, попадают на инфракрасный приемник. Часть лучей первого потока поглощаются нефтью, часть лучей второго потока поглощается водой. Инфракрасный приемник в зависимости от интенсивности прохождения инфракрасных лучей формирует электрические сигналы, которые поступают в усилитель. В усилителе сигналы увеличиваются по амплитуде и передаются в блок обработки информации. Указанный способ позволяет определить количество воды в нефти.

Недостатком данного способа является конечная толщина исследуемого материала, ограниченная проникающей способностью ИК-излучения, невозможность определить локальную влажность материала.

Наиболее близким является способ, описанный в работе инфракрасного влагомера для определения влажности конденсаторной бумаги [RU патент №2022257, G01N 21/86, опубл. 30.10.1994.], заключающийся в измерении потока ИК-излучения, прошедшего через исследуемый материал фотоприемником, который установлен на фиксированном расстоянии от источника ИК, сравнение полученных измерений с эталонными и вычисление на базе сравнения влажности материала. Сущность способа: бумажное полотно находится между источником ИК-излучения, системой фокусировки и ИК приемником. Источник ИК-излучения и коллиматор обеспечивают равномерное освещение части диска модулятора-монохроматора, напротив которого размещены входные окна передающих световодов. Интерференционные светофильтры выделяют из спектра ИК-излучения узкие спектральные линии, соответствующие линиям поглощения и пропускания целлюлозы и воды. Передающие световоды распределяют ИК-излучение по ширине бумажного полотна. Приемный световод собирает излучение, прошедшее сквозь полотно конденсаторной бумаги, и направляет на фотоприемник. Микропроцессор обрабатывает полученные сигналы и определяет значение влажности бумажного полотна в различных точках. Определение влажности происходит с помощью известных коэффициентов поглощения излучения водой и целлюлозой и тем самым влажности материала.

Недостатком прототипа является сложность фокусировки лучей, малая толщина исследуемого материала, ограниченная проникающей способностью ИК-излучения, невозможность определения локальной влажности материала.

Задачей изобретения является создание способа определения локальной влажности на любой толщине древесины, в том числе во время сушки с использованием диэлектрического нагрева в электромагнитном поле.

Технический результат: предлагаемый способ позволяет определить абсолютную влажность древесины в диапазоне от 10% до 120% и повысить качество сушки древесины.

Технический результат достигается тем, что устанавливают источник и приемник ИК-излучения поперек волокон древесины на выбранную глубину, измеряют поток ИК-излучения, прошедший через древесину, сравнивают полученные измерения с заранее определенной калибровочной зависимостью, связывающей изменение потока ИК-излучения, прошедшего через древесину с влажностью древесины, определенной весовым способом в фиксированные моменты времени, и вычисляют влажность древесины.

Способ основан на разнице коэффициентов поглощения ИК-излучения влаги и твердого диэлектрика.

На фиг. 1 приведен пример схемы устройства для осуществления заявляемого способа, где: 1 - источник ИК-излучения, 2 - приемник ИК-излучения, 3 - исследуемый образец, 4 - источник питания, 5 - блок обработки данных, включающий в себя микроконтроллер 6 с аналогово-цифровым преобразователем и устройством вывода информации, 7 - резистор, 8 - источник опорного напряжения.

На фиг. 2 - калибровочная зависимость, связывающая изменение интенсивности ИК-излучения, прошедшего через древесину и поглощенного приемником (в примере конкретного осуществления способа это падение напряжения на резисторе), с влажностью древесины, определенной весовым методом.

Предварительно строят калибровочную зависимость. В образце, принимаемом за эталон, измеряют влажность с помощью предлагаемого метода и с помощью, например, весового метода. В образце на фиксированном расстоянии устанавливают источник 1 и приемник 2 ИК-излучения в предварительно просверленные отверстия, при этом расстояние между ними нормируется проникающей способностью ИК-излучения. На источник 1 подают питание, происходит эмиссия потока излучения. В зависимости от влажности образца изменяется интенсивность потока излучения, идущего от источника к приемнику. При изменении интенсивности излучения сигнал приемника меняется. После этого сигнал приемника трансформируется в выходной сигнал. В течение сушки образца через промежутки времени фиксируют его массу и показание выходного сигнала инфракрасной системы измерения. По показаниям массы определяют влажность с помощью весового метода. Получают калибровочную зависимость, связывающую изменение интенсивности прошедшего через древесину и поглощенного приемником ИК-излучения с влажностью древесины, определенной весовым методом, и позволяющую определить влажность образца по значению сигнала на выходе системы. Затем источник 1 и приемник 2 ИК-волн устанавливают в отверстия, просверленные на любую глубину, но на фиксированном расстоянии друг от друга и поперек волокон исследуемого материала. Источник ИК-излучения 1 запитывается от источника питания 4. Происходит эмиссия потока излучения с источника 1. В зависимости от влажности материала происходит изменение интенсивности потока излучения, идущего от источника излучения 1 к приемнику 2. При изменении интенсивности излучения сигнал приемника 2 меняется. После этого сигнал приемника 2 трансформируется в выходной сигнал. Затем по предварительно полученной зависимости выходного сигнала от влажности определяется текущая влажность древесины.

Пример конкретного выполнения

Источник 1 и приемник 2 выбирали исходя из максимального соответствия спектральной чувствительности фотоприемника и источника. Используемая длина волны 850 нм. Источник 1 (ИК диод L34SF7C) и приемник 2 (Фототранзистор L32P3C) ИК волн устанавливали в предварительно просверленные отверстия на расстоянии 7±0,5 мм поперек волокон древесины березы 3. На источник 1 подавали питание 1,3 В. Происходила эмиссия потока излучения с источника 1. В зависимости от влажности образца происходило изменение интенсивности потока излучения, идущего от источника 1 к приемнику 2. При изменении интенсивности излучения сопротивление фототранзистора 2 менялось. В последовательную цепь фототранзистор 2 - резистор 7 подавали опорное напряжение 2,5 В от источника опорного напряжения 8. При изменении сопротивления фототранзистора 2 менялось и напряжение, фиксируемое на резисторе 7. Это напряжение поступало на аналогово-цифровой преобразователь микроконтроллера 6, который обрабатывает данные по ранее определенной калибровочной экспоненциальной функции:

где W - влажность образца,

U - напряжение на выходном резисторе.

Далее информация о влажности материала выводилась на экран монитора.

Предварительно была построена калибровочная зависимость падения напряжения на резисторе 7 от влажности. В образце березы, принимаемом за эталон, измеряли влажность с помощью предлагаемого метода и с помощью весового метода. В течение сушки образца через фиксируемые промежутки времени измеряли массу образца и значение напряжения на резисторе 7. По показаниям массы определяли влажность с помощью весового метода и сравнивали с напряжением на выходе системы. Калибровочная зависимость (фиг. 2) позволила определить влажность образца по значению напряжения на выходном резисторе.

Измерения для образца 1 древесины березы естественной влажности размером 30×30×30 мм и образца 2 объемно пропитанной древесины березы сведены в таблицы 1, 2. Как видно из таблиц, регистрируемый диапазон измерений влажности составлял от 10% до 120%.

Измерение локальной влажности древесины является важной задачей, т.к. информация о градиенте влажности позволяет минимизировать механические повреждения при сушке древесины. Заявляемый способ позволяет определять влажность на глубине не ограниченной проникающей способностью ИК-излучения, а возможность измерения при электромагнитном поле позволяет использовать способ при диэлектрическом (сверхвысокочастотном, высокочастотном и низкочастотном) нагреве древесины.

Способ измерения влажности древесины с использованием инфракрасного излучения

Похожие патенты RU2569946C1

название год авторы номер документа
СПОСОБ ОДНОВРЕМЕННОГО ОПРЕДЕЛЕНИЯ ВЛАЖНОСТИ И НАСЫПНОЙ ПЛОТНОСТИ ФРЕЗЕРНОГО ТОРФА 1991
  • Афанасьев А.Е.
  • Беляков В.А.
RU2009472C1
Способ определения остаточной влажности веществ 2021
  • Демидов Олег Михайлович
  • Егоров Илья Вениаминович
  • Филатов Евгений Викторович
  • Чебыкин Иван Владимирович
  • Кузнецова Ксения Александровна
RU2779230C1
Поточный влагомер 2017
  • Зайцев Евгений Вячеславович
  • Воробьев Владимир Викторович
  • Никулин Сергей Геннадьевич
  • Григорьев Борис Владимирович
RU2669156C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ КОМПОНЕНТОВ В ПОТОКЕ ВОДНО-НЕФТЯНОЙ СМЕСИ 2006
  • Акчурин Гариф Газизович
  • Акчурин Георгий Гарифович
  • Кочубей Вячеслав Иванович
RU2325631C1
СПОСОБ ИМПУЛЬСНОЙ СУШКИ ПИЛОМАТЕРИАЛОВ 2016
  • Курышов Григорий Николаевич
  • Расева Елена Александровна
  • Косарин Анатолий Александрович
RU2615854C1
Поточный влагомер 2019
  • Зайцев Евгений Вячеславович
  • Воробьев Владимир Викторович
  • Никулин Сергей Геннадьевич
  • Шабаров Александр Борисович
RU2704034C1
ИНФРАКРАСНЫЙ ДАТЧИК ВЛАЖНОСТИ И МАССЫ БУМАЖНОГО ПОЛОТНА 2003
  • Белкин Валерий Георгиевич
  • Василевич Леонид Николаевич
  • Титовицкий Иосиф Антонович
RU2321843C2
СПОСОБ СУШКИ ПИЛОМАТЕРИАЛОВ СВЧ-ЭНЕРГИЕЙ 2002
  • Гареев Ф.Х.
RU2228497C2
СПОСОБ ОПТИЧЕСКОГО ОПРЕДЕЛЕНИЯ КОМПОНЕНТА, ПРЕИМУЩЕСТВЕННО СЕРОВОДОРОДА, И ЕГО КОНЦЕНТРАЦИИ В ПОТОКЕ ГАЗА 2016
  • Могильная Татьяна Юрьевна
  • Томилин Вячеслав Иванович
  • Суминов Игорь Вячеславович
  • Никитина Маргарита Николаевна
  • Ильичев Дмитрий Александрович
RU2626389C1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАЖНОСТИ ВОЗДУШНО-СУХОГО ЛЕКАРСТВЕННОГО РАСТИТЕЛЬНОГО СЫРЬЯ ПЛОДОВ РАСТОРОПШИ ПЯТНИСТОЙ 2019
  • Куркин Владимир Александрович
  • Браславский Валерий Борисович
  • Жданов Дмитрий Александрович
RU2695662C1

Иллюстрации к изобретению RU 2 569 946 C1

Реферат патента 2015 года СПОСОБ ИЗМЕРЕНИЯ ВЛАЖНОСТИ ДРЕВЕСИНЫ С ИСПОЛЬЗОВАНИЕМ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

Изобретение относится к измерительной технике и может быть использовано для измерения влажности древесины в процессе сушки и хранения. Способ измерения влажности древесины заключается в том, что устанавливают источник и приемник ИК-излучения поперек волокон древесины на выбранную глубину, измеряют поток ИК-излучения, прошедший через древесину, сравнивают полученные измерения с заранее определенной калибровочной зависимостью, связывающей изменение потока ИК-излучения, прошедшего через древесину с влажностью древесины, определенной весовым способом в фиксированные моменты времени, и вычисляют влажность древесины. Изобретение позволяет определить абсолютную влажность древесины в диапазоне от 10% до 120% и повысить качество сушки древесины. 2 ил., 2 табл.

Формула изобретения RU 2 569 946 C1

Способ измерения влажности древесины с использованием инфракрасного излучения, характеризующийся тем, что устанавливают источник и приемник ИК-излучения поперек волокон древесины на любую выбранную глубину, измеряют поток ИК-излучения, прошедший через древесину, сравнивают полученные измерения с заранее определенной калибровочной зависимостью, связывающей изменение потока ИК-излучения, прошедшего через древесину, с влажностью древесины, определенной весовым способом в фиксированные моменты времени, и вычисляют влажность древесины.

Документы, цитированные в отчете о поиске Патент 2015 года RU2569946C1

KR 20130112547 A, 14.10.2013
CN 1936537 A, 28.03.2007
Влагомер 1985
  • Иосебашвили Исак Михайлович
  • Маградзе Илья Семенович
  • Чаруев Нодар Гиоргиевич
  • Шаптошвили Давид Семенович
  • Шуглиашвили Гурам Владимирович
  • Майсурадзе Федор Федорович
  • Алхазишвили Давид Отарович
SU1259164A1
Устройство для измерения давления 1960
  • Романовский А.А.
SU136579A1
US 6525319 B2, 25.02.2003
СПОСОБ ОЧИСТКИ ТРУБОПРОВОДОВ И СТОЯКОВ КАНАЛИЗАЦИОННОЙ СЕТИ 2014
  • Григорьев Владимир Степанович
RU2583006C2
ИНФРАКРАСНЫЙ ВЛАГОМЕР ДЛЯ ИЗМЕРЕНИЯ ВЛАЖНОСТИ КОНДЕНСАТОРНОЙ БУМАГИ 1991
  • Белкин Валерий Георгиевич[By]
  • Бычинов Евгений Владимирович[By]
  • Дрык Андрей Алексеевич[By]
  • Кухарчик Петр Дмитриевич[By]
  • Рубаник Владимир Владимирович[By]
  • Скурат Станислав Станиславович[By]
  • Скрипко Александр Степанович[By]
  • Титовицкий Иосиф Антонович[By]
RU2022257C1

RU 2 569 946 C1

Авторы

Литвишко Евгений Сергеевич

Горешнев Максим Алексеевич

Лопатин Владимир Васильевич

Даты

2015-12-10Публикация

2014-07-01Подача