ПОЛИМОРФНЫЕ ФОРМЫ 5(6)-АМИНО-2-(ПАРА-АМИНОФЕНИЛ)-БЕНЗИМИДАЗОЛА И СПОСОБЫ ПОЛУЧЕНИЯ ПОЛИМОРФНЫХ ФОРМ 5(6)-АМИНО-2-(ПАРА-АМИНОФЕНИЛ)-БЕНЗИМИДАЗОЛА Российский патент 2015 года по МПК C07D235/18 

Описание патента на изобретение RU2570026C1

Область техники

Данное изобретение относится к полиморфным формам 5(6)-амино-2-(п-аминофенил)-бензимидазола и способам их получения.

Уровень техники

Многие соединения могут существовать в различных кристаллических формах, которые проявляют различные физические и химические свойства (например, температуру плавления, стабильность при хранении, скорость растворения и др.). Такие формы называются полиморфными модификациями. Получение той или иной кристаллической модификации обусловливается комплексом условий, и в большей степени - условиями, в которых протекает кристаллизация субстанции (температурный фактор, природа растворителя, давление и т.д.). Определение экспериментальных условий для получения различных модификаций очень важно, если необходимо получать соединения с требуемыми характеристиками.

Соответственно, в случае, когда имеется большое количество полиморфных форм, важно разработать методы преимущественного получения каждой полиморфной формы.

Вещество 5(6)-амино-2-(п-аминофенил)-бензимидазол является одним из мономеров для производства высокопрочных термостойких волокон. К качеству данного мономера предъявляются высокие требования. Промышленный 5(6)-амино-2-(п-аминофенил)-бензимидазол представляет собой смесь полиморфных модификаций с температурой плавления 220°C и 235°C. Данный продукт является нестабильным и, в зависимости от внешних условий, таких как влажность и температура, может переходить в другие полиморфные формы. Рядом экспериментов установлено, что при повышенной влажности 5(6)-амино-2-(п-аминофенил)-бензимидазол переходит в кристаллогидрат, при повышенной температуре может переходить из одной модификации в другую. Присутствие кристаллогидрата и состав полиморфных модификаций отражаются на качестве получаемых нитей.

Рациональное использование явления полиморфизма веществ имеет большое значение в области химической промышленности при выработке технологических приемов получения соединений и дальнейших условий их хранения и применения.

Например, в заявке на патент Японии 62-226980 описано, что две полиморфные формы гидрохлорида празозина имеют различную стабильность, оказывая тем самым влияние на результаты определения стабильности при длительном хранении. В заявке 64-71816 описано также, что из нескольких полиморфных форм гидрохлорида буспирона только одна определенная форма имеет преимущества с точки зрения сохранения специфических физических свойств при хранении или в условиях производства.

Полиморфизм имеет большое значение, особенно в тех случаях, когда физические свойства твердого вещества оказывают влияние на биологическую активность, физико-химические свойства или способ промышленного производства вещества. Например, при применении твердого препарата на животных существенным является заблаговременное выявление наличия или отсутствия полиморфизма и разработка метода избирательного получения желаемой полиморфной формы. В случае, когда вещество хранится в течение длительного периода времени, возникает вопрос о том, как сохранить кристаллическую форму в устойчивом состоянии. Важно также разработать способ получения кристаллической формы, легко воспроизводимый при промышленном производстве.

В патентах RU 2345988 (C07D 235/18 (2006.01)), RU 2283307 (C07D 235/18 (2006.01)), US 4109093 A (C07D 235/30 (22.08.78)), US 4192947 A (C07D 235/18 (11.03.80)) описаны способы получения 5(6)-амино-2-(п-аминофенил)-бензимидазола. Присутствие разных полиморфных форм в этих патентах не отмечено.

О полиморфизме данного соединения кратко упоминается в статьях следующих авторов:

1) В.Г. Кравченко, Л.П. Милькова, М.В. Шаблыгин, «Физическая химия», 1977, т. 51 №10, «Исследование условий полиморфизма 5(6) -амино-2(п-аминофенил)- бензимидазола»;

2) Г.Л. Тудоровская, Т.А. Солдатова, Н.В. Новожилова, Л.С. Ващило, Н.В. Ведяйнова, «Физическая химия», 1977, т. 49 №11 «Исследование полиморфизма 5(6)-амино-2(п-аминофенил)- бензимидазола»;

3) К.А. Кочетков, С.М. Чистопалов, Г.Г. Иванова и А.Н. Тавторкин, «Журнал прикладной химии» 2009, вып. 82, №12 «Применение вибрационного воздействия при кристаллизации и сушке 5(6) -амино-2-(п-аминофенил)- бензимидазола».

Полного описания полиморфных форм и способов получения каждой формы не приводится.

Изобретение заявлено без выделения наиболее близкого аналога, так как из уровня техники заявителю не известны средства того же назначения.

Сущность изобретения

Данное изобретение относится к полиморфным модификациям 5(6)-амино-2-(п-аминофенил)-бензимидазола и обеспечивает способ избирательного получения его различных целевых полиморфных форм, в данном описании идентифицированных как формы α, β, γ.

Полиморфная форма α характеризуется термограммой дифференциальной сканирующей калориметрии с эндотермическим пиком при (234-236)°C и характеристическим поглощением при инфракрасном спектрофотометрическом анализе при 3464, 3375, 3200, 1636, 1624, 1553, 1480, 1453, 1406, 1370, 1308, 1280, 1227, 1186, 1132, 968, 834, 808 см-1, причем время растворения формы α в диметилацетамиде составляет 10-15 минут.

Полиморфная форма β характеризуется термограммой дифференциальной сканирующей калориметрии с эндотермическим пиком при (220-223)°C, причем ИК-спектр формы β имеет поглощение при 3453, 3375, 3320, 3170, 1640, 1613, 1554, 1480, 1451, 1407, 1370, 1313, 1280, 1228, 1186, 1130, 957, 877,847 см-1, а время растворения формы β в диметилацетамиде составляет 2-6 минут.

Аморфная форма γ характеризуется термограммой дифференциальной сканирующей калориметрии с эффектом стеклования при (115-125)°C и характеристическим поглощением при инфракрасном спектрофотометрическом анализе при 3380, 3215, 1634, 1613, 1554, 1480, 1447, 1405, 1370, 1300, 1280, 1228, 1182, 1132, 956, 836 см-1, причем время растворения формы γ в диметилацетамиде составляет 30 секунд.

Способ получения полиморфной формы α включает нагрев 5(6)-амино-2-(п-аминофенил)-бензимидазола при (228±2)°C до полного осуществления полиморфного перехода при указанной температуре.

Способ получения полиморфной формы β включает нагрев 5(6)-амино-2-(п-аминофенил)-бензимидазола при (200±5)°C до полного осуществления полиморфного перехода при указанной температуре.

Способ получения аморфной формы γ включает нагрев 5(6)-амино-2-(п-аминофенил)-бензимидазола при (235-240)°C до полного осуществления полиморфного перехода при указанной температуре.

Способы получения полиморфных форм α или β также могут включать перекристаллизацию 5(6)-амино-2-(п-аминофенил)-бензимидазола из растворителя, являющегося диметилацетамидом или ацетоном соответственно, с последующим удалением растворителя.

Техническим результатом заявленного изобретения является получение индивидуальных полиморфных форм 5(6)-амино-2-(п-аминофенил)-бензимидазола, обладающих постоянным комплексом физико-химических свойств, таких как температура плавления, время растворения, реакционная способность в реакциях поликонденсации.

Задачей заявленного изобретения является получение индивидуальных полиморфных форм 5(6)-амино-2(п-аминофенил)-бензимидазола для контролируемого проведения процесса поликонденсации и получения полимеров с заданными свойствами.

Краткое описание чертежей

Конкретные аспекты изобретения могут быть понятны при обращении к прилагаемым фигурам.

На фиг. 1 представлен типичный ИК-спектр для формы α по настоящему изобретению.

На фиг. 2 представлена типичная термограмма дифференциальной сканирующей калориметрии (ДСК) для формы α по настоящему изобретению.

На фиг. 3 представлен типичный ИК-спектр для формы β по настоящему изобретению.

На фиг. 4 представлена типичная термограмма ДСК для формы β по настоящему изобретению.

На фиг. 5 представлен типичный ИК-спектр для формы γ по настоящему изобретению.

На фиг. 6 представлена типичная термограмма ДСК для формы γ по настоящему изобретению.

Подробное описание изобретения

Различные полиморфные формы одного и того же соединения могут проявлять различные физические и химические свойства, например, стабильность по отношению к влаге и температуре, скорость растворения.

Полиморфные формы можно выявлять, идентифицировать, классифицировать и характеризовать с использованием хорошо известных способов, таких как дифференциальная сканирующая калориметрия (ДСК), инфракрасная спектроскопия, оптическая микроскопия.

Полиморфные модификации можно получить рядом способов. Такие способы включают перекристаллизацию из раствора с последующим охлаждением и удалением растворителя, воздействие температуры.

Полиморфные формы

Данное изобретение относится к полиморфным формам 5(6)-амино-2-(п-аминофенил)-бензимидазола, который имеет структуру, показанную ниже:

Указанное соединение производится промышленным способом в виде полиморфной композиции, содержащей две кристаллические формы 5(6)-амино-2-(п-аминофенил)-бензимидазола - смесь полиморфных форм α и β, где содержание формы α составляет (80-20)%, а формы β (20-80)%.

Полиморфные формы 5(6)-амино-2-(п-аминофенил)-бензимидазола могут быть получены перекристаллизацией в растворителе. Например, раствор, образованный при повышенной температуре (100°C) медленно охлаждают, растворитель отгоняют, кристаллосольват подвергают сушке до полного удаления растворителя.

Также полиморфные формы могут быть получены рекристаллизацией 5(6)-амино-2-(п-аминофенил)-бензимидазола при повышенных температурах (200-300)°C.

Один вариант осуществления изобретения относится к форме α. Форма α представляет собой кристаллическое вещество, которое может быть получено из смеси полиморфных форм (α+β) при воздействии на нее температурой 228°C в течение времени, достаточного для полного превращения 5(6)-амино-2-(п-аминофенил)-бензимидазола в форму α, примерно 1 час. Форму α можно также получить перекристаллизацией смеси полиморфных форм (α+β) в диметилацетамиде с последующим удалением растворителя.

Другой вариант осуществления изобретения относится к форме β. Форма β представляет собой кристаллическое вещество, которое может быть получено из смеси полиморфных форм (α+β) при воздействии на нее температурой (200±3)°C в течение времени, достаточного для полного превращения 5(6)-амино-2-(п-аминофенил)-бензимидазола в форму β, примерно 25 часов.

Другой вариант осуществления изобретения относится к форме γ. Форма γ представляет собой аморфное вещество, которое может быть получено из смеси полиморфных форм (α+β) при воздействии на нее температурой 240°C и выше (но не выше температуры кипения и разложения) в течение времени, достаточного для полного превращения 5(6)-амино-2-(п-аминофенил)-бензимидазола в форму γ, примерно 3 часа.

Форма α

Форма α может быть получена воздействием температуры (228±2)°C на смесь полиморфных форм (α+β), примерно в течение 1 часа. Также форма α может быть получена из смеси полиморфных форм (α+β) перекристаллизацией в диметилацетамиде с последующим удалением растворителя.

Типичные ИК-спектры показаны на фиг. 1. Характеристические полосы поглощения для формы α показаны в табл. 1.

Типичные термические характеристики для формы α показаны на фиг. 2. Кривая ДСК формы α имеет эндотермический пик примерно при 234°C.

Время растворения формы α в диметилацетамиде составляет 10-15 минут.

При воздействии на форму α температурой (240±3)°C она переходит в форму γ.

Форма β

Форма β может быть получена из смеси полиморфных форм (α+β) при воздействии на нее температурой (200±5)°C примерно в течение 25 часов. Также форма β может быть получена из смеси полиморфных форм (α+β) перекристаллизацией в ацетоне с последующим удалением растворителя при температуре до 120°C.

Типичные ИК-спектры представлены на фиг. 3. Характеристические полосы поглощения для формы β показаны в табл. 1.

Типичные термические характеристики для формы β показаны на фиг. 4. Кривая ДСК для формы β имеет эндотермический пик примерно при 222°C.

Время растворения формы β в диметилацетамиде 2-6 минут.

При воздействии на форму β температурой 240°C она переходит в форму γ.

Форма γ

Форма γ может быть получена из смеси полиморфных форм (α+β) при воздействии на нее температурой (240±5)°C, примерно в течение 3 часов.

Типичные данные ИК-спектров для формы γ представлены на фиг. 5. Характеристические полосы поглощения для формы γ показаны в табл. 1.

Типичные термические характеристики для формы γ показаны на фиг. 6. Кривая ДСК формы γ имеет эффект стеклования примерно при (115-125)°C.

Время растворения формы γ в диметилацетамиде 30 секунд.

При воздействии на форму γ температурой (200-228)°C, она переходит в другую форму, которая имеет эндотермический пик на кривой ДСК примерно при 230°C.

Способы получения полиморфных форм

Способ получения форм α, β, γ включает нагрев промышленного 5(6)-амино-2-(п-аминофенил)-бензимидазола (смесь полиморфных форм (α+β)) в определяемых условиях, как описано в примерах 6.1; 6.2; 6.3.

Другой способ получения полиморфных форм включает перекристаллизацию промышленного 5(6)-амино-2-(п-аминофенил)-бензимидазола (смесь полиморфных форм (α+β)) из растворителя (для формы α из диметилацетамида, для формы β из ацетона) с последующим удалением растворителя отгонкой и сушкой образцов при 120°C.

Примеры

Пример 1

Получение формы α

Взвешенный образец промышленного 5(6)-амино-2-(п-аминофенил)-бензимидазола (примерно 10 г) подвергали нагреву при (228±1)°C в течение 1 часа. Температура полиморфного перехода является критической. Полиморфный переход проверяли методом дифференциальной сканирующей калориметрии.

Пример 2

Получение формы β

Взвешенный образец промышленного 5(6)-амино-2-(п-аминофенил)-бензимидазола (примерно 10 г) подвергали нагреву при (200±1)°C в течение 25 часов. Температура полиморфного перехода является критической. Полиморфный переход проверяли методом дифференциальной сканирующей калориметрии.

Пример 3

Получение формы γ

Взвешенный образец промышленного 5(6)-амино-2-(п-аминофенил)-бензимидазола (примерно 10 г) подвергали нагреву при (240±1)°C в течение 3 часов. Полиморфный переход проверяли методом дифференциальной сканирующей калориметрии.

Пример 4

Получение форм α, β

Взвешенный образец промышленного 5(6)-амино-2-(п-аминофенил)-бензимидазола (примерно 0,5 г) растворяли в растворителях (для формы α в диметилацетамиде, для формы β в ацетоне) при повышенной температуре (грели до кипячения, после закипания смесь кипятили еще около 30 мин при перемешивании), после кипячения растворам давали возможность остыть до комнатной температуры. После достижения комнатной температуры растворы охлаждали до температуры (10±2)°C и выдерживали при этой температуре в течение 15 часов. Через 15 часов проводили удаление растворителя последующей сушкой образца при 120°C. Полиморфный состав определяли методом дифференциальной сканирующей калориметрии.

Данные анализа

Дифференциальная сканирующая калориметрия

Дифференциальную сканирующую калориметрию (ДСК) проводили с использованием прибора для термического анализа - дифференциального сканирующего калориметра DSC1 фирмы «METTLER TOLEDO». В качестве калибровочного стандарта использовали индий. Примерно 4 мг образца помещали в алюминиевый тигель для ДСК и точно регистрировали массу. Для анализа использовали закрытые тигли с одним микроотверстием. Образцы нагревали со скоростью 10 К/мин до конечной температуры 250°C.

Фурье ИК-спектроскопия

Инфракрасные спектры в среднем диапазоне получали на ИК-спектрофотометре Инфра ЛЮМ FT-08 с преобразованием Фурье, оборудованном источником излучения и детектором на основе дейтерированного триглицинсульфата (DTGS). ИК-спектрометр калибровали по длине волны с применением полистирола.

При исследовании образцов использовали устройство для диффузного отражения. Набор фоновых данных получали с использованием зеркала. Каждый спектр представлял собой 93 скана с разрешением 4 см-1.

Образец помещали в кювету (диаметром 3 мм) от приставки для диффузного отражения и проводили регистрацию спектра.

Растворение

Растворение проб проводили в стакане с крышкой на 50 мл с использованием механической мешалки. При проведении анализа поддерживали температуру растворителя 25°C. Навеска пробы составляла 1 г, объем растворителя - 50 мл. В качестве растворителя использовали 3% раствор лития хлористого в диметилацетамиде.

Похожие патенты RU2570026C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ 5(6)-АМИНО-2(4'-АМИНОФЕНИЛ)-БЕНЗИМИДАЗОЛА 2005
  • Вулах Евгений Львович
  • Лакунин Владимир Юрьевич
  • Слугин Иван Васильевич
  • Склярова Галина Борисовна
RU2283307C1
СПОСОБ ПОЛУЧЕНИЯ 5(6)-АМИНО-2-(4-АМИНОФЕНИЛ)БЕНЗИМИДАЗОЛА 2006
  • Вулах Евгений Львович
  • Кочетков Константин Александрович
  • Стародубцев Виктор Степанович
  • Ефремов Анатолий Ильич
  • Винокуров Юрий Валентинович
RU2345988C2
СПОСОБ ПОЛУЧЕНИЯ 5(6)-АМИНО-2-(4-АМИНОФЕНИЛ)БЕНЗИМИДАЗОЛА 2013
  • Вулах Евгений Львович
  • Чернобровкина Мария Николаевна
  • Завьялова Надежда Владимировна
  • Атрощенко Юрий Михайлович
  • Федотов Петр Иванович
  • Меркин Александр Александрович
RU2547210C2
СПОСОБ ПОЛУЧЕНИЯ 5(6)-АМИНО-2-(4-АМИНОФЕНИЛ)БЕНЗИМИДАЗОЛА ИЗ 2',4,4'-ТРИНИТРОБЕНЗАНИЛИДА 2013
  • Вулах Евгений Львович
  • Чернобровкина Мария Николаевна
  • Завьялова Надежда Владимировна
  • Боровлев Андрей Алексеевич
  • Никуленко Степан Николаевич
  • Атрощенко Юрий Михайлович
  • Федотов Петр Иванович
  • Меркин Александр Александрович
RU2547261C2
ПОЛИМОРФНЫЕ КРИСТАЛЛИЧЕСКИЕ ФОРМЫ 5-[4-2-[N-МЕТИЛ-N-(2-ПИРИДИЛ)АМИНО]ЭТОКСИ]БЕНЗИЛ]ТИАЗОЛИДИН-2,4-ДИОН МАЛЕАТА 2001
  • Чебийям Прабхакар
  • Мамиллапалли Рамабхадра Шарма
  • Кришнамуртхи Виас
  • Силла Вишнувардхан Редди
  • Гаддам Ом Редди
RU2286345C2
СТАБИЛЬНАЯ ПОЛИМОРФНАЯ ФОРМА 6-ФТОР-9-МЕТИЛ-9H-БЕТА-КАРБОЛИНА И ЕЕ ПРИМЕНЕНИЯ 2020
  • Роммельшпахер, Ханс
  • Зигмунт, Томаш
  • Шлингензипен, Раймар
RU2806322C2
ФЕНИЛАМИНОПИРИМИДИН ИЛИ ПОЛИМОРФНАЯ ФОРМА СОЛИ ФЕНИЛАМИНОПИРИМИДИНА 2016
  • Люй Биньхуа
  • Ли Чэнвэй
  • Сяо Дань
RU2712226C2
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМОРФНОЙ ФОРМЫ 3-[5-АМИНО-4-(3-ЦИАНОБЕНЗОИЛ)ПИРАЗОЛ-1-ИЛ]-N-ЦИКЛОПРОПИЛ-4-МЕТИЛБЕНЗАМИДА 2017
  • Сулейман Осама
  • Перес Лусия Ромеро
  • Харлахер Корнелиус Стефан
  • Джоунз Стюарт
RU2765719C2
СПОСОБ СУШКИ 5(6)-АМИНО-2-(4-АМИНОФЕНИЛ)БЕНЗИМИДАЗОЛА 2014
  • Вулах Евгений Львович
  • Завьялова Надежда Владимировна
  • Чернобровкина Мария Николаевна
  • Бирюков Георгий Гранитович
  • Баев Сергей Вячеславович
RU2565930C1
МНОГОТОННАЖНЫЙ ПРОЦЕСС ПОЛИМЕРИЗАЦИИ ПОЛИАРАМИДА, СОДЕРЖАЩЕГО 5(6)-АМИНО-2-(п-АМИНОФЕНИЛ)БЕНЗИМИДАЗОЛ (DAPBI) 2009
  • Де Вос Рихард Элена Теодорус Петрус
  • Сюрквин Йоаннес Маринус
  • Пепелс Марлике Элизабет Йозефине
RU2488604C2

Иллюстрации к изобретению RU 2 570 026 C1

Реферат патента 2015 года ПОЛИМОРФНЫЕ ФОРМЫ 5(6)-АМИНО-2-(ПАРА-АМИНОФЕНИЛ)-БЕНЗИМИДАЗОЛА И СПОСОБЫ ПОЛУЧЕНИЯ ПОЛИМОРФНЫХ ФОРМ 5(6)-АМИНО-2-(ПАРА-АМИНОФЕНИЛ)-БЕНЗИМИДАЗОЛА

Изобретение относится к полиморфным формам α и β, а также к аморфной форме γ 5(6)-амино-2-(п-аминофенил)-бензимидазола. Кроме того, изобретение относится к способам получения указанных полиморфных и аморфной форм. Технический результат: получены полиморфные и аморфная формы (6)-амино-2-(п-аминофенил)-бензимидазола, обладающие постоянным комплексом физико-химических свойств, таких как температура плавления, время растворения, реакционная способность в реакциях поликонденсации, которые могут быть применимы для получения полимеров со специальными характеристиками, в том числе - волокнообразующих полимеров для производства параарамидных высокопрочных термостойких волокон. 6 н.п. ф-лы, 6 ил., 1 табл., 4 пр.

Формула изобретения RU 2 570 026 C1

1. Полиморфная форма α 5(6)-амино-2-(п-аминофенил)-бензимидазола, характеризующаяся термограммой дифференциальной сканирующей калориметрии с эндотермическим пиком при (234-236)°C и характеристическим поглощением при инфракрасном спектрофотометрическом анализе при 3464, 3375, 3200, 1636, 1624, 1553, 1480, 1453, 1406, 1370, 1308, 1280, 1227, 1186, 1132, 968, 834, 808 см-1, причем время растворения формы α в диметилацетамиде составляет 10-15 минут.

2. Полиморфная форма β 5(6)-амино-2-(п-аминофенил)-бензимидазола, характеризующаяся термограммой дифференциальной сканирующей калориметрии с эндотермическим пиком при (220-223)°C, причем ИК-спектр формы β имеет поглощение при 3453, 3375, 3320, 3170, 1640, 1613, 1554, 1480, 1451, 1407, 1370, 1313, 1280, 1228, 1186, 1130, 957, 877,847 см-1, а время растворения формы β в диметилацетамиде составляет 2-6 минут.

3. Аморфная форма γ 5(6)-амино-2-(п-аминофенил)-бензимидазола, характеризующаяся термограммой дифференциальной сканирующей калориметрии с эффектом стеклования при (115-125)°C и характеристическим поглощением при инфракрасном спектрофотометрическом анализе при 3380, 3215, 1634, 1613, 1554, 1480, 1447, 1405, 1370, 1300, 1280, 1228, 1182, 1132, 956, 836 см-1, причем время растворения формы γ в диметилацетамиде составляет 30 секунд.

4. Способ получения полиморфной формы α, включающий нагрев 5(6)-амино-2-(п-аминофенил)-бензимидазола при (228±2)°C до полного осуществления полиморфного перехода при критической температуре или перекристаллизацию 5(6)-амино-2-(п-аминофенил)-бензимидазола из растворителя, являющегося диметилацетамидом, с последующим удалением растворителя.

5. Способ получения полиморфной формы β, включающий нагрев 5(6)-амино-2-(п-аминофенил)-бензимидазола при (200±5)°C до полного осуществления полиморфного перехода при критической температуре или перекристаллизацию 5(6)-амино-2-(п-аминофенил)-бензимидазола из растворителя, являющегося ацетоном соответственно, с последующим удалением растворителя.

6. Способ получения аморфной формы γ, включающий нагрев 5(6)-амино-2-(п-аминофенил)-бензимидазола при (235-240)°C до полного осуществления полиморфного перехода при критической температуре.

Документы, цитированные в отчете о поиске Патент 2015 года RU2570026C1

Кочетков К.А
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
Платонова И.В
и др.: "структурные особенности и полиморфизм фрагментов полиамидбензимидазолов", Вестник Московского Университета, серия 2 химия, 1998, 39(4), стр.253-257
2-(П-аминофенил)-5-нитробензимидазол как промежуточный продукт для синтеза мономеров 1977
  • Эфрос Лев Соломонович
  • Стрелец Борис Хаимович
  • Акулин Юрий Иванович
  • Гельмонт Марк Моисеевич
  • Евдокимов Андрей Михайлович
SU749834A1

RU 2 570 026 C1

Авторы

Комиссаров Сергей Владимирович

Лакунин Владимир Юрьевич

Ведехин Владимир Викторович

Склярова Галина Борисовна

Бородачева Анна Федоровна

Шрайфель Александр Семенович

Даты

2015-12-10Публикация

2014-05-06Подача