СПОСОБ ОТБРАКОВКИ КОЛЬЦЕВЫХ РЕЗОНАТОРОВ ЛАЗЕРНЫХ ГИРОСКОПОВ Российский патент 2015 года по МПК H01S3/83 G01C19/66 

Описание патента на изобретение RU2570096C1

Изобретение относится к приборостроению и может быть использовано в лазерной гироскопии для отбраковки кольцевых резонаторов лазерных гироскопов по величине порога зоны нечувствительности (порога захвата) и значениям нелинейных искажений масштабного коэффициента.

Предлагаемый способ относится к области лазерных гироскопов на основе кольцевых He-Ne лазеров с длиной волны 633 нм, используемых для решения многих задач навигации, измерения угловых перемещений, геодезии и геофизики. Одним из основных источников погрешности ЛГ является обратное рассеяние (ОР) на зеркалах кольцевого резонатора (КР), приводящее к появлению зоны нечувствительности при малых скоростях вращения (так называемый порог захвата) и нелинейным искажениям масштабного коэффициента [F. Aronowitz. Optical Gyros and their Applications. RTO AGARDograph 339, 3-1, 1999].

Известен способ отбраковки кольцевых резонаторов лазерных гироскопов [F. Aronowitz and R.J. Collins, "Mode coupling Due to Backscattering in a He-Ne Traveling-wave Ring Laser", Applied Physics Letters, 9, 55 1966], основанный на определении величины порога захвата по результатам измерения зависимости частоты биений встречных волн кольцевого резонатора от скорости, и по превышению допустимого значения величины порога захвата принимают решение об отбраковке кольцевого резонатора.

Недостатком такого способа отбраковки является относительно узкая область применения, поскольку величина порога захвата определяется уже на конечном этапе сборки лазерных гироскопов, т.е. после проведения длительного и дорогостоящего комплекса вакуумно-технологической обработки и наполнения моноблочного кольцевого резонатора рабочей Не-Ne газовой смесью.

Наиболее близким к предлагаемому является способ отбраковки кольцевых резонаторов [US 4884283 А, 28.11.1989], заключающийся в том, что в юстируемом кольцевом резонаторе при помощи излучения внешнего He-Ne лазера с длиной волны 633 нм возбуждают собственное колебание в одном из направлений и по результатам измерения обратного рассеяния определяют величину порога захвата, по превышению допустимого значения которого принимают решение от отбраковке кольцевого резонатора.

Недостатком способа является относительно низкая точность отбраковки, поскольку в кольцевых лазерах отсутствует прямая корреляционная связь между величиной обратного рассеяния и порогом захвата. Т.е. «большая» величина интенсивности обратного рассеяния не всегда приводит к «большой» величине порога захвата. Это легко видеть из соотношения для порога захвата ΩL, приведенного в работе [F. Aronowitz. Optical Gyros and their Applications. RTO AGARDograph 339, 3-1, 1999]:

где с - скорость света;

L - периметр кольцевого резонатора;

rcw и rccw - модули коэффициентов связи (КС) встречных волн кольцевого лазера в направлении по часовой стрелке (cw) и против часовой стрелки (ccw) соответственно;

φ - суммарный фазовый сдвиг, возникающий при обратном рассеянии.

Нетрудно видеть, что модули коэффициентов связи прямо пропорциональны квадратному корню из интенсивности обратного рассеяния зеркал кольцевого резонатора, поэтому наиболее близкое техническое решение не позволяет корректно осуществлять отбраковку кольцевых резонаторов.

Величина порога захвата определяется тремя параметрами: модулями КС встречных волн и фазовым сдвигом φ. Наиболее близкое техническое решение дает возможность определить только величину модуля КС в одном из направлений. Этого недостаточно, чтобы корректно прогнозировать величину порога захвата в кольцевом резонаторе. Например, «большое» значение одного из модулей КС (его величина пропорциональна квадратному корню из интенсивности обратного рассеяния) не обязательно приводит к «большой» величине порога захвата. В случае, когда rcw=rccw, а φ=π, мы имеем ΩL=0. Можем иметь и другую ситуацию, когда rcw=0, а rccw не равен нулю, и мы имеем «большую» величину порога захвата.

Задача, на решение которой направлено изобретение, является повышение точности отбраковки кольцевых резонаторов.

Требуемый технический результат заключается в повышении точности отбраковки кольцевых резонаторов.

Поставленная задача решается, а требуемый технический результат достигается тем, что в способе, заключающемся в том, что, возбуждают в кольцевом резонаторе волны собственных колебаний с помощью излучения внешнего лазера и определяют величину порога полосы захвата кольцевого резонатора, по превышению допустимого значения которого принимают решение об отбраковке кольцевого резонатора, согласно изобретению дополнительно возбуждают в кольцевом резонаторе собственное колебание во встречном направлении путем установки у выходного зеркала кольцевого резонатора возвратного зеркала, и проводят измерение временных зависимостей интенсивностей встречных волн, выходящих из кольцевого резонатора, при продольном перемещении возвратного зеркала на расстояние, превышающее половину длины волны лазерного излучения, а величину порога полосы захвата кольцевого резонатора определяют по результатам измерений временных зависимостей интенсивностей встречных волн.

На чертеже представлены:

на фиг. 1 - функциональная схема кольцевого резонатора с возвратным зеркалом, установленным у выходного зеркала кольцевого резонатора;

на фиг. 2 - функциональная схема устройства для отбраковки кольцевых резонаторов;

на фиг. 3 - временные зависимости интенсивностей встречных волн, выходящих из кольцевого резонатора при продольном перемещении возвратного зеркала.

На чертеже обозначены:

1 - лазер, 2 - кольцевой резонатор, 3 - первое фотоприемное устройство, 4 - второе фотоприемное устройство, 5 - блок стабилизации частоты, 6 - оптический изолятор, 7 - делительная пластина, 8 - возвратное зеркало, 9 - пьезокерамический корректор, 10 - первый синхронный детектор, 11 - второй синхронный детектор, 12 - высоковольтный усилитель, 13 - цифровой осциллограф, 14 - персональный компьютер.

Блок 5 стабилизации частоты используется для «привязки» частоты генерации лазера к частоте собственного колебания кольцевого резонатора.

На графике временной зависимости интенсивностей встречных волн, выходящих из кольцевого резонатора при продольном перемещении возвратного зеркала, «нижняя» по чертежу зависимость соответствует волне, направленной против часовой стрелки (собственное колебание во встречном направлении). «Точка поворота» пилообразного напряжения на пьезокорректоре возвратного зеркала достигалась примерно на 10-й секунде.

Предложенный способ отбраковки кольцевых резонаторов лазерных гироскопов реализуется следующим образом.

Сущность способа заключается в том, что при перемещении возвратного зеркала 8 в продольном направлении, в интенсивностях встречных волн, выходящих из кольцевого резонатора 2, наблюдается чередование максимумов и минимумов (с периодом, равным λ/2). Сдвиг между положениями экстремумов равняется суммарному фазовому сдвигу, возникающему при обратном рассеянии. Таким образом, измерения интенсивностей встречных волн, выходящих из кольцевого резонатора 2, позволяют корректно прогнозировать величину порога захвата кольцевого резонатора 2 на стадии его сборки и юстировки.

Для измерения величины модулей коэффициентов связи (КС) встречных волн кольцевого лазера в направлении по часовой стрелке (cw) и против часовой стрелки (ccw), а также фазового сдвига из-за обратного рассеяния, может быть использована оптическая схема (фиг. 1), в которой собственные колебания кольцевого резонатора возбуждались одновременно в обоих встречных направлениях.

В этой схеме часть излучения, выходящего из кольцевого резонатора 2, возвращается в него при помощи возвратного зеркала 8. В результате, во встречных направлениях кольцевого резонатора 2 возбуждаются основные колебания (полагаем, что частота генерации лазера 1 совпадает с частотой собственного колебания кольцевого резонатора 2). Перемещая возвратное зеркало 8 при помощи пьезокерамического корректора 9 в продольном направлении, регистрируют изменения в интенсивностях встречных волн кольцевого резонатора 2, вызванных интерференцией между прямыми и обратно рассеянными волнами. Роль «сильных» волн играют собственные колебания кольцевого резонатора 2, возбуждаемые при помощи внешнего зондирующего лазера 1 и возвратного зеркала 8. «Слабыми» волнами являются части каждого из этих колебаний, рассеянных в обратном направлении. Перед входным зеркалом кольцевого резонатора 2 устанавливается делительная пластинка 7 с коэффициентом пропускания по интенсивности 50%, что позволяет измерять интенсивность волны, выходящей из кольцевого резонатора 2 в направлении против часовой стрелки.

Запишем поля волн, выходящих из кольцевого резонатора 2 в направлении по часовой стрелке (cw) и против часовой стрелки (ccw), учитывая, что все эти волны имеют одно и то же значение частоты, исключим из этих соотношений множитель exp(iωt) (ω - круговая частота генерации лазера 1, t - время).

В направлении по часовой стрелке (cw) и против часовой стрелки (ccw) суммарное поле представляет собой суперпозицию двух волн:

Множители 2r/δ в этих соотношениях появились в результате учета связи интенсивностей прямой и обратной волны. Несложно также установить связь между напряженностями полей прямой и отраженной от возвратного зеркала 8 волны и вышедшей затем из кольцевого резонатора 2:

где R - коэффициент отражения (по интенсивности) от возвратного зеркала.

Фазы «сильных» волн, направленных по и против часовой стрелки, связаны следующим соотношением:

Возвратное зеркало 8 играет роль линии задержки (l - расстояние между выходным и возвратным зеркалами) и при его перемещении остальные слагаемые, формирующие значения фаз двух волн, не изменяются.

Уравнения для интенсивности встречных волн можно представить в виде:

Исключив из этих уравнений члены, пропорциональные квадрату модулей связи (полагаем, что R½/T2» rccw, rcw), получаем

При перемещении возвратного зеркала 8 в продольном направлении, в интенсивностях встречных волн, выходящих из кольцевого резонатора 2, будет наблюдаться чередование максимумов и минимумов (с периодом, равным λ/2). Сдвиг между положениями экстремумов равняется суммарному фазовому сдвигу, возникающему при обратном рассеянии. В случае φcwccw=90 градусов, изменение интенсивностей встречных волн, выходящих из кольцевого резонатора 2, происходит в противофазе, т.е. максимум интенсивности одной из волн достигается при том же положении возвратного зеркала 8, что и минимум другой волны.

Приведем также соотношения для контрастов наблюдаемых экстремумов интенсивностей встречных волн. Определим их как отношение разности максимального и минимального значений (при перемещении возвратного зеркала) к сумме этих же значений:

В качестве примера проведем численные оценки величин контрастов. Полагаем, что T2=150 ppm, δ=400 ppm, r=1 ppm, R=0,5. Для этих значений параметров кольцевого резонатора имеем: Ccw=0,53 10-2, Cccw=1,9 10-2. Т.е. при перемещении возвратного зеркала относительные изменения в интенсивностях волн, выходящих из кольцевого резонатора 2, будут достигать порядка одного процента.

Этот способ был реализован на установке, схема которой представлена на фиг. 2.

Основу установки составляют внешний He-Ne лазер 1, снабженный пьезокорретором, управляющим частотой генерации, измеряемый кольцевой резонатор 2 и блок 5 стабилизации частоты 5, осуществляющий привязку частоты генерации лазера к собственным колебаниям кольцевого резонатора. Два фотоприемных устройства 3 и 4 используются для измерения интенсивностей излучений, выходящих из кольцевого резонатора. Сигнал с фотоприемного устройства 3 используется также для управления блоком 5. Возвратное зеркало 8 установлено на пьезокорректоре 9, который перемещает его при помощи высоковольтного усилителя 12. Для регистрации временных зависимостей излучений, выходящих из кольцевого резонатора 2, используется два синхронных детектора 10 и 11, цифровой осциллограф 13 и персональный компьютер 14. Для ослабления оптической связи между кольцевым резонатором 2 и лазером 1 используется оптический изолятор 6.

Таким образом, благодаря введению дополнительных операций способа (в частности, дополнительно возбуждают в кольцевом резонаторе собственное колебание во встречном направлении путем установки у выходного зеркала кольцевого резонатора возвратного зеркала, и проводят измерение временных зависимостей интенсивностей встречных волн, выходящих из кольцевого резонатора, при продольном перемещении возвратного зеркала на расстояние, превышающее половину длины волны лазерного излучения, а величину порога полосы захвата кольцевого резонатора определяют по результатам измерений временных зависимостей интенсивностей встречных волн), обеспечивается более высокая точность отбраковки, поскольку обеспечивается прямая корреляционная связь между величиной обратного рассеяния и порогом захвата.

Похожие патенты RU2570096C1

название год авторы номер документа
Способ измерения комплексных коэффициентов связи в кольцевых резонаторах лазерных гироскопов 2016
  • Петрухин Евгений Александрович
  • Бессонов Алексей Станиславович
  • Ходырев Вадим Юрьевич
RU2629704C1
Способ юстировки кольцевых резонаторов лазерных гироскопов 2015
  • Петрухин Евгений Александрович
RU2616348C2
ОПТИЧЕСКИЙ ГИРОСКОП С ПАССИВНЫМ КОЛЬЦЕВЫМ РЕЗОНАТОРОМ 1997
  • Новиков Михаил Афанасьевич
  • Иванов Вадим Валерьевич
RU2124185C1
Четырехчастотный лазерный гироскоп зеемановского типа 2019
  • Брославец Юрий Юрьевич
  • Бородулин Дмитрий Евгеньевич
  • Колчев Андрей Борисович
  • Ларионов Павел Валерьевич
  • Миликов Эмиль Анвярович
  • Морозов Александр Дмитриевич
  • Семенов Валерий Геннадьевич
  • Фомичев Алексей Алексеевич
RU2731171C1
ТВЕРДОТЕЛЬНЫЙ ЛАЗЕРНЫЙ ГИРОСКОП 2009
  • Сахаров Вячеслав Константинович
  • Дураев Владимир Петрович
RU2421689C1
ДИФФЕРЕНЦИАЛЬНЫЙ МНОГОМОДОВЫЙ ВОЛОКОННЫЙ ЛАЗЕРНЫЙ ГИРОСКОП 2020
  • Сахаров Вячеслав Константинович
RU2751052C1
ОПТИЧЕСКИЙ СМЕСИТЕЛЬ ИЗЛУЧЕНИЯ ЧЕТЫРЕХЧАСТОТНОГО ЛАЗЕРНОГО ГИРОСКОПА ЗЕЕМАНОВСКОГО ТИПА 2019
  • Брославец Юрий Юрьевич
  • Ларионов Павел Валерьевич
  • Миликов Эмиль Анвярович
  • Морозов Александр Дмитриевич
  • Семенов Валерий Геннадьевич
  • Тарасенко Александр Борисович
  • Фомичев Алексей Алексеевич
RU2709428C1
ТВЕРДОТЕЛЬНЫЙ ЛАЗЕРНЫЙ ГИРОСКОП С МЕХАНИЧЕСКИ АКТИВИРУЕМОЙ УСИЛИВАЮЩЕЙ СРЕДОЙ 2007
  • Шварц Сильвэн
  • Гютти Франсуа
  • Пошолль Жан-Поль
  • Фенье Жилль
RU2437062C2
СТАБИЛИЗИРОВАННЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕРНЫЙ ГИРОСКОП 2004
  • Швартц Сильвен
  • Фенье Жилль
  • Покошолль Жан-Поль
RU2331846C2
Способ выбора резонаторных зеркал датчиков лазерных гироскопов 2023
  • Азарова Валентина Васильевна
  • Чертович Илья Валерьевич
RU2803111C1

Иллюстрации к изобретению RU 2 570 096 C1

Реферат патента 2015 года СПОСОБ ОТБРАКОВКИ КОЛЬЦЕВЫХ РЕЗОНАТОРОВ ЛАЗЕРНЫХ ГИРОСКОПОВ

Изобретение касается отбраковки кольцевых резонаторов лазерных гироскопов по величине порога зоны нечувствительности (порога захвата) и значениям нелинейных искажений масштабного коэффициента. Способ заключается в том, что возбуждают в кольцевом резонаторе волны собственных колебаний с помощью излучения внешнего лазера и определяют величину порога полосы захвата кольцевого резонатора, по превышению допустимого значения которого принимают решение об отбраковке кольцевого резонатора. Дополнительно возбуждают в кольцевом резонаторе собственное колебание во встречном направлении путем установки у выходного зеркала кольцевого резонатора возвратного зеркала, и проводят измерение временных зависимостей интенсивностей встречных волн, выходящих из кольцевого резонатора, при продольном перемещении возвратного зеркала на расстояние, превышающее половину длины волны лазерного излучения, а величину порога полосы захвата кольцевого резонатора определяют по результатам измерений временных зависимостей интенсивностей встречных волн. Технический результат заключается в повышении точности отбраковки. 3 ил.

Формула изобретения RU 2 570 096 C1

Способ отбраковки кольцевых резонаторов лазерного гироскопа, заключающийся в том, что возбуждают в кольцевом резонаторе волны собственных колебаний с помощью излучения внешнего лазера и определяют величину порога полосы захвата кольцевого резонатора, по превышению допустимого значения которого принимают решение об отбраковке кольцевого резонатора, отличающийся тем, что дополнительно возбуждают в кольцевом резонаторе собственное колебание во встречном направлении путем установки у выходного зеркала кольцевого резонатора возвратного зеркала, и проводят измерение временных зависимостей интенсивностей встречных волн, выходящих из кольцевого резонатора, при продольном перемещении возвратного зеркала на расстояние, превышающее половину длины волны лазерного излучения, а величину порога полосы захвата кольцевого резонатора определяют по результатам измерений временных зависимостей интенсивностей встречных волн.

Документы, цитированные в отчете о поиске Патент 2015 года RU2570096C1

US 6424419 B1 23.07.2002
US 5208653 A1 04.05.1993
US 4884283 A1 28.11.1989
СПОСОБ АКТИВНОЙ СТАБИЛИЗАЦИИ ЧАСТОТЫ ИЗЛУЧЕНИЯ КОЛЬЦЕВОГО ЛАЗЕРА 1991
  • Кравцов Н.В.
  • Ларионцев Е.Г.
RU2045117C1

RU 2 570 096 C1

Авторы

Петрухин Евгений Александрович

Даты

2015-12-10Публикация

2014-06-18Подача