СПОСОБ ПОЛУЧЕНИЯ ПРОТИВОКОРРОЗИОННОГО ПИГМЕНТА Российский патент 2015 года по МПК C09C1/24 C09C1/28 C09C1/40 C09C1/02 C09D5/08 

Описание патента на изобретение RU2570455C2

Изобретение относится к области защиты металлов от коррозии лакокрасочными покрытиями.

Известно, что основную защитную функцию в системе лакокрасочных покрытий на металлах выполняют грунтовки, противокоррозионное действие которых в значительной мере определяется содержанием и типом пигментов. Наиболее эффективными в этом аспекте являются противокоррозионные пигменты-ингибиторы, присутствие которых в составе покрытия позволяет подавлять коррозионные процессы даже при нарушении их сплошности. Однако наиболее широко используемые пигменты-ингибиторы, например хром- и свинецсодержащие, обладают высокой токсичностью.

Группу противокоррозионных пигментов, представляющих экологически безвредную альтернативу хром- и свинецсодержащим пигментам, представляют собой ферриты - смешанные оксиды шпинельной структуры общей формулы МеО·Fe2O3, где Me - магний, цинк, олово, медь, кальций, кадмий, кобальт, барий, стронций, железо, марганец, см. книгу Корсунский Л.Ф., Калинская Т.В., Степин С.Н. Неорганические пигменты. Справ, изд. - СПб.: Химия, 1992. С.138; статьи: Свобода М. Свойства ферритов цинка и кальция как противокоррозионных пигментов // Защита металлов. - 1988. - Т.24. - №1. - С.44-47; Лепесов К.К., Гурьева Л.Н., Васильева Л.С. Физико-химические и защитные свойства ферритов металлов (кальция, магния, цинка) // Ж. прикл. химии. - 1991. - Т.64. - №2. - С.422-425; Коррозионно-электрохимические свойства в системах сталь-ферриты щелочноземельных металлов / К.К. Лепесов, Л.Н. Гурьева, Л.С. Васильева // Конгр. "Защита-92", М.: 6-11 сент. 1992. Расшир. тез. докл. - С.158.; Защитные свойства некоторых ферритных металлов / К.К. Лепесов, Л.Н. Гурьева, Л.С. Васильева // Теория и практ. электрохим. процессов и экол. аспекты их использ.: Тез. докл. Всерос. науч.-практ.конф., Барнаул, - 1990. - С.210. Эти пигменты относятся к противокоррозионным, защищающим металл посредством придания щелочной реакции коррозионной среде, проникающей к металлу.

Известен способ получения противокоррозионного пигмента - феррита кальция из оксидов железа и кальция см. пат. Франции 2396051, МПК C09D 5/08, 1979.

Однако в последнее время, в связи с истощением сырьевой базы происходит значительное удорожание противокоррозионных пигментов, поэтому больше внимания стало уделяться получению пигментов из отходов производства. С одной стороны, многие техногенные отходы содержат ценные компоненты, а с другой, создают в местах захоронения экологические проблемы. Во многих случаях такие отходы характеризуются высокой дисперсностью. Это исключает необходимость предварительного измельчения и активации их поверхности при проведении гетерогенных реакций синтеза на их основе. Поэтому их использование при получении противокоррозионных пигментов является перспективным путем снижения их стоимости.

Известен способ получения ферритного пигмента с использованием отходов гальванических производств, см. Макаров В.И., Ладыгина О.В., Индейкин Е.А. Ферриты кальция на основе гальваношламов - новый эффективный вид антикоррозионных пигментов // Лакокрасочные материалы. - 1999. - №5 - С.3-4, см. патент RU 2391365, МПК С09С 1/24 D 5/08.

Недостатком способа является наличие в составе отхода гальванических производств - гальваношламов токсичных соединений хрома, который входит в состав получаемых пигментов.

Известен способ получения противокоррозионного пигмента на основе отхода электропечей литейного производства - аспирационной пыли, которую смешивают с гидроксидом кальция, с последующим прокаливанием смеси и размолом до требуемой степени дисперсности см. Патент RU 2391365, МПК С09С 1/24 (2006.01), С09С 1/02 (2006.01), C09D 5/08 (2006.01), 2008.

Недостатками способа являются сложность технологии получения, заключающейся в наличии стадий смешения компонентов с водой с последующим удалением воды сушкой, и высокая температура прокаливания шихты, 820÷900°С.

Наиболее близким по технической сущности к предлагаемому изобретению является способ получения противокоррозионного пигмента на основе отхода электропечей литейного производства - аспирационной пыли, содержащей, мас.%: Fe2O3 63,9-70,0, FeO 7,0-11,32, SiO2 8,9-16, Al2O3 1,45-3,12, путем смешения аспирационной пыли с компонентом, образующим феррит при химическом взаимодействии с оксидами железа в составе аспирационной пыли, последующим прокаливанием смеси, в качестве компонента, образующего феррит при химическом взаимодействии с оксидами железа в составе аспирационной пыли, используют доломитовую муку, содержащую двойную углекислую соль кальция и магния в количестве 80-95 мас.%, которую смешивают с аспирационной пылью в сухом виде при соотношении аспирационная пыль: доломитовая мука, мас.%, равном 60÷40:40÷60, соответственно, а прокаливание ведут в течение 3-5 ч при температуре 700-800°С, см. патент RU 2505571, МПК С09С 1/24 (2006.01), С09С 1/28 (2006.01), С09С 1/40 (2006.01), С09С 1/02 (2006.01), C09D 5/08 (2006.01), 2014.

Недостатками способа являются высокая температура прокаливания реакционной смеси - 700-800°С и недостаточно высокие противокоррозионные свойства пигмента.

Задачей изобретения являются снижение температуры получения и повышение противокоррозионных свойств противокоррозионного пигмента.

Техническая задача решается тем, что в способе получения противокоррозионного пигмента на основе отхода электропечей литейного производства - аспирационной пыли, содержащей, мас.%: F2O3 63,9-70,0, FeO 7,0-11,32, SiO2 8,9-16, Al2O3 1,45-3,12, путем смешения аспирационной пыли с компонентом, образующим феррит при химическом взаимодействии с оксидами железа в составе аспирационной пыли, последующим прокаливанием смеси, в качестве компонента, образующего феррит при химическом взаимодействии с оксидами железа в составе аспирационной пыли, используют природный минерал гидроксида магния брусит, который смешивают с аспирационной пылью в сухом виде при соотношении аспирационная пыль:брусит, мас.%, равном 60÷40:40÷60, соответственно, а прокаливание ведут в течение 3,5-5 ч при температуре 550-650°С.

Решение технической задачи позволяет повысить противокоррозионные свойства противокоррозионного пигмента и снизить энергетические затраты на его получение за счет уменьшения температуры прокаливания реакционной смеси.

Брусит - это минерал, гидроксид магния с химической формулой Mg(OH)2 используется как сырье для химической, металлургической, стекольной и других отраслей промышленности.

Полученный пигмент представляет собой высокодисперсный порошок темно-коричневого цвета, включающий феррит магния.

Для лучшего понимания изобретения приводим примеры конкретного выполнения.

Пример 1 конкретного выполнения синтеза пигмента

Противокоррозионный пигмент получают следующим образом: смешивают 60 г (60 мас.%) аспирационной пыли, содержащей, мас.%: Fe2O3 63,9-70,0, FeO 7,0-11,32, SiO2 8,9-16, Al2O3 1,45-3,12, с 40 г (40 мас.%) компонента, образующего феррит при химическом взаимодействии с оксидами железа в составе аспирационной пыли, в качестве которого используют природный минерал гидроксида магния брусит, при соотношении брусит:аспирационная пыль, равном 40:60, полученную смесь прокаливают при температуре 550°С в течение 3,5 часов, а затем измельчают до требуемой степени дисперсности.

Примеры 2-28 аналогичны примеру 1. Условия получения пигмента приведены в таблице 1.

Для доказательства противокоррозионных свойств полученных пигментов было исследовано взаимодействие их водных вытяжек со сталью и защитные свойства покрытий пигментированных ферритным пигментом. В качестве объекта сравнения используют ферритный пигмент, полученный в соответствии с патентом RU 2505571, МПК С09С 1/24 (2006.01), С09С 1/28 (2006.01), С09С 1/40 (2006.01), С09С 1/02 (2006.01), C09D 5/08 (2006.01), 2014 (прототип).

Испытание противокоррозионных свойств проводят следующим образом.

В качестве образцов используют кузовную сталь 08 кп. Перед противокоррозионными испытаниями осуществляют абразивную обработку поверхности с последующим обезжириванием уайт-спиритом и ацетоном.

Противокоррозионные свойства пигментных вытяжек оценивают по плотности тока коррозии стали в смеси фонового электролита с водной вытяжкой пигмента.

В качестве фонового электролита используют 3%-ный водный раствор хлорида натрия. Водные вытяжки пигментов готовят в соответствие с методикой, описанной в книге, см. И.А. Горловский, А.А. Индейкин, И.А. Толмачев. Лабораторный практикум по пигментам и пигментированным лакокрасочным материалам, 1990, Л.: Химия, С.188.

15 г пигмента помещают в химический стакан вместимостью 150-300 мл, приливают цилиндром 50 мл дистиллированной воды, нагревают до кипения и кипятят в течение 30 мин. Суспензию охлаждают, фильтрат заливают в цилиндр и доводят его объем до 50 мл дистиллированной водой, после чего смешивают с равным объемом 6%-ного раствора хлорида натрия. Полученный электролит используют для испытаний через сутки после приготовления.

Плотность тока коррозии стали находят из потенциодинамических поляризационных кривых, снятых на потенциостате со скоростью 0,2 мВ/с в области потенциала коррозии (±30 мВ) по методике, описанной в статьях, см. Елисаветский А.М., Ратников В.П., Власов В.В., Каталов В.И. Расчет параметров уравнений кинетики коррозионных процессов. Лакокрасочные материалы, №6, 1997, с.26-28, Абросимова Л.А., Каюмов А.А., Светлаков А.П., Воробьев Е.С. Определение тока коррозии компьютерной обработкой поляризационных кривых // Лакокрасочные материалы и покрытия. Современное состояние и тенденции развития; Сб. статей Всероссийской науч.-технич. конф. студентов и молодых ученых. Декабрь 2005. Казанский государственный технологический университет. - Казань, 2005. С.99-103.

При определении противокоррозионных свойств покрытий, пигментированных

ферритным пигментом, в качестве пленкообразующей основы используют алкидный лак ПФ-060 (ГОСТ 19007), содержание ферритного пигмента в покрытии составляет 6 мас%. Грунтовки, используемые при формировании покрытий, получают диспергированием пигментной части в алкидном лаке ПФ-060 на лабораторном бисерном диспергаторе до степени дисперсности 30 ед. по прибору «Клин».

Перед нанесением грунтовки тщательно перемешивают и фильтруют через сито с сеткой номеров 01-02 (ГОСТ 6613-86) и разбавляют до рабочей условной вязкости по вискозиметру ВЗ-246 при температуре 20±2°С уайт-спиритом. Период между подготовкой поверхности и нанесением ЛКМ не превышал 2 часов.

Грунтовки наносят в три слоя спиральным ракелем Spiral Film Applicator Model 358. Формирование ЛКП осуществляют в естественных условиях в течение не менее 3 суток. Толщина трехслойного покрытия составляла не более 30-40 мкм.

Толщину ЛКП определяют с помощью индикаторного толщиномера ТЛКП. Для проведения электрохимических испытаний используют двухэлектродную ячейку, которую готовят наклеиванием на образец стеклянного цилиндра с внутренним диаметром 3 см. Рабочими электродами служат участок покрытия, образующий дно стакана с площадью 7,07 см2, и параллельно расположенная платиновая пластина.

Данную систему рассматривают как общий конденсатор с потерями, обкладками которого служит стальной субстрат и электролит, а диэлектрической прокладкой лакокрасочное покрытие.

Используя переменно-токовый метод исследования, определяют электрическую емкость (С) при частоте 1 кГц с помощью измерителя иммитанса Е7-21. Этот показатель обратно пропорционален изолирующей способности покрытия.

С помощью рН-метра рН-150М измеряют значения неравновесного электродного потенциала стали с покрытием, установившиеся в течение 1000 часов испытаний. Смещение потенциала в область более высоких значений отвечает повышению эффективности противокоррозионного действия покрытия.

Как видно из примеров конкретного выполнения, полученные по заявляемому способу пигменты по противокоррозионным свойствам превосходят прототип (см. таблицу 1).

При температуре прокаливания ниже 550°С и выше 650°С, а также при соотношениях брусит:аспирационная пыль, не входящих в указанные пределы (60÷40:40÷60 мас.%) полученный продукт обладает недостаточно высокими противокоррозионными характеристиками.

Заявляемая совокупность признаков позволяет повысить противокоррозионные свойства противокоррозионного пигмента и снизить температуру прокаливания реакционной смеси, что позволяет уменьшить энергетические затраты на его получение, а следовательно, и его стоимость.

Таблица 1 Режимные условия получения пигмента заявляемым способом и противокоррозионные свойства полученных образцов и образца, полученного по прототипу. № примера Состав смеси, масс.% Условия прокаливания Электрическая емкость системы окрашенная сталь-электролит, нФ Коррозионный потенциал стали с покрытием, мВ (н.в.э.) Плотность тока коррозии, А/см2 Темпераратура, °С. Время, ч 1 Брусит 40, Аспирационная пыль 60. 550 3,5 3,8 289 5,10·10-7 2 5 3,7 294 5,01·10-7 3 600 3,5 3,7 291 4,86·10-7 4 4 3,6 292 4,77·10-7 5 5 3,8 290 4,78·10-7 6 650 3,5 3,8 296 4,74·10-7 7 5 3,7 295 4,71·10-7 8 Брусит 45, Аспирационная пыль 55. 550 3,5 3,7 293 4,73·10-7 9 5 3,6 298 4,69·10-7 10 600 3,5 3,6 284 4,70·10-7 11 4 3,3 283 4,65·10-7 12 5 3,4 284 4,66·10-7 13 650 3,5 3,6 289 4,82·10-7

Продолжение таблицы 1 14 5 3,7 285 4,77·10-7 15 Брусит 55, Аспирационная пыль 45. 550 3,5 3,5 287 4,56·10-7 16 5 3,3 289 4,59·10-7 17 600 3,5 3,4 281 4,43·10-7 18 4 3,2 288 4,38·10-7 19 5 3,3 284 4,42·10-7 20 650 3,5 3,4 282 4,57·10-7 21 5 3,6 288 4,63·10-7 22 Брусит 60, Аспирационная пыль 40. 550 3,5 3,5 293 4,74·10-7 23 5 3,7 294 4,77·10-7 24 600 3,5 3,8 292 4,68·10-7 25 4 3,6 296 4,79·10-7 26 5 3,8 291 4,82·10-7 27 650 3,5 3,7 289 4,79·10-7 28 5 3,6 282 4,84·10-7 29 Противокоррозионные свойства по прототипу 4,3 250 5,25·10-7

Похожие патенты RU2570455C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПРОТИВОКОРРОЗИОННОГО ПИГМЕНТА 2012
  • Степин Сергей Николаевич
  • Сагбиев Ильгизар Раффакович
  • Гатиятуллин Айрат Хамитович
  • Вахин Алексей Владимирович
  • Сафиуллин Марсель Ильсурович
RU2505571C1
СПОСОБ ПОЛУЧЕНИЯ ПРОТИВОКОРРОЗИОННОГО ПИГМЕНТА 2008
  • Степин Сергей Николаевич
  • Светлаков Анатолий Петрович
  • Вахин Алексей Владимирович
  • Усманов Ильгиз Валерьевич
RU2391365C2
СПОСОБ ПОЛУЧЕНИЯ ХРОМАТНОГО АНТИКОРРОЗИОННОГО ПИГМЕНТА 2007
  • Степин Сергей Николаевич
  • Светлаков Анатолий Петрович
  • Вахин Алексей Владимирович
  • Шереметьева Индира Муратовна
RU2382062C2
СПОСОБ ПОЛУЧЕНИЯ ЖЕЛЕЗООКИСНЫХ ПИГМЕНТОВ С АНТИКОРРОЗИОННЫМИ СВОЙСТВАМИ 2015
  • Рухлядева Мария Сергеевна
  • Колесникова Мария Петровна
  • Белоусов Михаил Викторович
  • Никоненко Евгения Алексеевна
  • Берг Николай Витальевич
RU2607584C2
СПОСОБ ПОЛУЧЕНИЯ ЖЕЛЕЗОСОДЕРЖАЩИХ ПИГМЕНТОВ 2019
  • Горбачев Евгений Вячеславович
  • Медведев Виктор Владимирович
  • Шапот Дмитрий Михайлович
  • Козлов Вадим Александрович
  • Ахмедов Сергей Норматович
  • Афанасьев Александр Юрьевич
RU2700071C1
СПОСОБ ПОЛУЧЕНИЯ НЕОРГАНИЧЕСКОГО ХРОМАТИЧЕСКОГО ПИГМЕНТА 2011
  • Николаева Лариса Андреевна
  • Каляпина Станислава Александровна
RU2457226C1
Способ производства офлюсованного железорудного агломерата 2020
  • Бобылев Геннадий Сергеевич
  • Коваленко Александр Геннадиевич
  • Падалка Владимир Павлович
  • Кочура Владимир Васильевич
  • Зубенко Александр Вячеславович
  • Люльчак Сергей Михайлович
  • Артемов Валерий Иванович
  • Коробкин Николай Николаевич
  • Кузнецов Александр Михайлович
  • Хайбулаев Абдула Саидович
RU2768432C2
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛИЧЕСКОГО ОКСИДА ЖЕЛЕЗА(III) 2012
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
  • Кузяков Николай Юрьевич
  • Малков Алексей Валерьевич
RU2501737C1
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА ЖЕЛЕЗА 2012
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
RU2489358C1
СПОСОБ ПОЛУЧЕНИЯ ЖЕЛЕЗОКАЛЬЦИЕВОГО ПИГМЕНТА 2010
  • Мустафин Ахат Газизьянович
  • Сабитова Зиля Шарифигулловна
  • Ковтуненко Сергей Викторович
  • Шарипов Тагир Вильданович
RU2451706C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ ПРОТИВОКОРРОЗИОННОГО ПИГМЕНТА

Изобретение относится к области защиты металлов от коррозии лакокрасочными покрытиями. Противокоррозионный пигмент получают на основе отхода электропечей литейного производства - аспирационной пыли, содержащей, мас.%: Fe2O3 63,9-70,0, FeO 7,0-11,32, SiO2 8,9-16, Al2O3 1,45-3,12. Аспирационную пыль смешивают в сухом виде с бруситом, природным минералом гидроксида магния, при соотношении аспирационная пыль:брусит, мас.%, равном 60-40:40-60, соответственно. Полученную смесь прокаливают в течение 3,5-5 ч при температуре 550-650°С. Изобретение позволяет повысить противокоррозионные свойства противокоррозионного пигмента и снизить энергетические затраты на его получение за счет уменьшения температуры прокаливания. 1 табл., 28 пр.

Формула изобретения RU 2 570 455 C2

Способ получения противокоррозионного пигмента на основе отхода электропечей литейного производства - аспирационной пыли, содержащей, мас.%: Fe2O3 63,9-70,0, FeO 7,0-11,32, SiO2 8,9-16, Al2O3 1,45-3,12, путем смешения аспирационной пыли с компонентом, образующим феррит при химическом взаимодействии с оксидами железа в составе аспирационной пыли, с последующим прокаливанием смеси, в качестве компонента, образующего феррит при химическом взаимодействии с оксидами железа в составе аспирационной пыли, используют природный минерал гидроксида магния брусит, который смешивают с аспирационной пылью в сухом виде при соотношении аспирационная пыль:брусит, мас.%, равном 60-40:40-60, соответственно, а прокаливание ведут в течение 3,5-5 ч при температуре 550-650°С.

Документы, цитированные в отчете о поиске Патент 2015 года RU2570455C2

СПОСОБ ПОЛУЧЕНИЯ ПРОТИВОКОРРОЗИОННОГО ПИГМЕНТА 2012
  • Степин Сергей Николаевич
  • Сагбиев Ильгизар Раффакович
  • Гатиятуллин Айрат Хамитович
  • Вахин Алексей Владимирович
  • Сафиуллин Марсель Ильсурович
RU2505571C1
Способ защиты переносных электрических установок от опасностей, связанных с заземлением одной из фаз 1924
  • Подольский Л.П.
SU2014A1
СПОСОБ ПОЛУЧЕНИЯ ПРОТИВОКОРРОЗИОННОГО ПИГМЕНТА 2008
  • Степин Сергей Николаевич
  • Светлаков Анатолий Петрович
  • Вахин Алексей Владимирович
  • Усманов Ильгиз Валерьевич
RU2391365C2
ПИГМЕНТ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1997
  • Тимошин В.Н.
  • Селин В.В.
  • Милехин Ю.М.
  • Кривошеев Н.А.
  • Яковлев С.И.
RU2118973C1
Способ и аппарат для получения гидразобензола или его гомологов 1922
  • В. Малер
SU1998A1
US 8016935 B2, 13.09.2011
EP 760387 B1, 20.10
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1

RU 2 570 455 C2

Авторы

Степин Сергей Николаевич

Сагбиев Ильгизар Раффакович

Гатиятуллин Айрат Хамитович

Сафиуллин Марсель Ильсурович

Даты

2015-12-10Публикация

2014-03-05Подача