СПОСОБ ОЦЕНКИ ЭКСПЛУАТАЦИОННОЙ НАДЕЖНОСТИ ЗАЩИТНОЙ ГЕРМЕТИЧНОЙ ОБОЛОЧКИ РЕАКТОРНОГО ОТДЕЛЕНИЯ АЭС Российский патент 2016 года по МПК G01M99/00 

Описание патента на изобретение RU2577555C9

Изобретение относится к области строительства и эксплуатации атомных электрических станций и, в частности, к периоду преднапряжения, испытания и последующей эксплуатации герметичных защитных оболочек реакторных отделений с реактором ВВР-1000 (1200).

Известно техническое решение - способ определения деформационных характеристик сооружений (В.Г. Казачек, Н.В. Нечаев, С.Н. Нотенко, В.И. Римшин, А.Г. Ройтман Обследование и испытание зданий и сооружений. - М., Высш. шк., 2007 г., с. 223-227), заключающийся в маркировании по заданным сечениям сооружения контролируемых точек и выполнении поцикловых определений их положения, при этом одну из контролируемых точек привязывают к геодезическому реперу, далее выполняют анализ измерительной информации.

Наиболее близким техническим решением к заявляемому является способ определения деформационных характеристик сооружений (Патент RU №2426089, G01M 99/00 опубл.: 10.08.2011, Бюл. №22), заключающийся в маркировании по заданным сечениям сооружения контролируемых точек и выполнении поцикловых определений их положения, при этом контролируемые точки привязывают к геодезическим планово-высотным пунктам, затем выполняют анализ измерительной информации, при этом предварительно формируют многоярусное планово-высотное геодезическое обоснование, как вне сооружения, так и внутри его в единой системе координат, причем данная система координат совмещается с системой координат сооружения, затем маркируют исследуемые точки, при этом размещают их в моментной зоне строительных конструкций исследуемого объекта с шагом, равным примерно половине толщины данной строительной конструкции, в переходной зоне - с шагом, равным примерно толщине строительной конструкции, в безмоментной зоне - с шагом, равным двум и более толщинам строительной конструкции, контроль внешних геометрических параметров сооружения выполняют поэтапно, при этом контроль положения точек, расположенных на вертикальных строительных конструкциях, определяют методом пространственной полярной засечки, положение контролируемых точек, расположенных на горизонтальных строительных элементах, определяют методом геометрического нивелирования, при этом положения исследуемых точек, размещенных в моментной зоне, определяют десятикратно точнее, чем положения исследуемых точек, размещенных в безмоментной зоне, положения исследуемых точек размещенных в переходной зоне определяют пятикратно точнее, чем положения исследуемых точек размещенных в безмоментной зоне, внутренние геометрические параметры сооружения определяют до и после проведения всех этапов по определению внешних геометрических параметров.

Недостатком описанного технического решения является то, что им не обеспечивается определение отношения деформаций геометрических параметров защитной герметичной оболочки на этапах преднапряжения, испытания и дальнейшей эксплуатации, следствием чего, на основе результатов реализации данного технического решения невозможно оценит текущее техническое состояние объекта исследования.

Задачей заявляемого изобретения является оценка эксплуатационной надежности защитных герметичных оболочек по результатам контроля их преднапряжения, испытания и в последующий эксплуатационный период.

Сущность изобретения заключается в том, что в способе оценки эксплуатационной надежности защитной герметичной оболочки реакторного отделения АЭС, заключающемся в маркировании по заданным сечениям защитной герметичной оболочки контролируемых точек и выполнении поцикловых определений их положения, при этом контролируемые точки привязывают к геодезическим планово-высотным пунктам, затем выполняют анализ измерительной информации, при этом планово-высотное геодезическое обоснование формируют многоярусным, как вне сооружения, так и внутри его в единой системе координат, причем данная система координат совмещается с системой координат защитной герметичной оболочки, исследуемые точки размещают в моментной, переходной, безмоментной зонах строительных элементов защитной герметичной оболочки на ее внешней и внутренней поверхностях, контроль геометрических параметров выполняют поэтапно, согласно изобретению геодезическое обоснование создается с привязкой к осям или образующим капитальных строительных конструкций защитной герметичной оболочки или конструктивных элементов технологического оборудования установленного в гермообъеме, в процессе контроля внутренние и (или) внешние геометрические параметры защитной герметичной оболочки определяют на этапах после полного возведения герметичной защитной оболочки, после выполнения полной программы ее преднапряжения, при испытании на этапе создания максимального внутреннего давления и в последствии при эксплуатации в период каждого планового предупредительного ремонта, по полученным поэтапным результатам определяют величины перемещений контролируемых точек, в том числе:

где А0, Аобж, Аиспытан - параметры перемещения исследуемых точек на этапах полного возведения оболочки, завершения преднапряжения и испытания;

Аэкспл(1), Аэкспл(i), Аэкспл(i+1) - параметры перемещения исследуемых точек на этапах планово предупредительных ремонтов, последовательно следующих за этапом испытания;

δобж, δиспыт, δэкспл(1), δэкспл(i+1) - соответствующие межэтапные параметры перемещения исследуемых точек;

по параметрам межэтапных перемещений контролируемых точек определяют коэффициент запаса прочности строительных конструкций защитной герметичной оболочки

где Кисх - коэффициент запаса прочности, определенный по результатам реализации этапов преднапряжения и испытания защитной герметичной оболочки;

Ктекущ(i) - коэффициент запаса прочности, определенный по результатам реализации i этапов на стадии эксплуатации защитной герметичной оболочки;

при выполнении для всех строительных конструкций защитной герметичной оболочки условия неравенства

где Кнорм - нормативный коэффициент запаса прочности; определяют условие соответствия эксплуатационной надежности защитной герметичной оболочки.

Предлагаемое техническое решение способа оценки эксплуатационной надежности защитной герметичной оболочки реакторного отделения АЭС обеспечивает создание геодезического обоснования с привязкой к осям или образующим капитальных строительных конструкций защитной герметичной оболочки или конструктивных элементов технологического оборудования, установленного в гермообъеме, что позволяет сформировать или однозначно восстановить геодезическое обоснование и положения идентичных контролируемых точек на всех возможных этапах полного жизненного цикла защитной герметичной оболочки. В процессе контроля внутренние и (или) внешние геометрические параметры защитной герметичной оболочки определяют на этапах после полного возведения герметичной защитной оболочки, после выполнения полной программы ее преднапряжения, при испытании на этапе создания максимального внутреннего давления и в последствии при эксплуатации в период каждого планового предупредительного ремонта, по полученным поэтапным результатам определяют величины межэтапных перемещений контролируемых точек, по значениям которых определяют коэффициент запаса прочности строительных конструкций защитной герметичной оболочки

По соблюдению для всех строительных конструкций защитной герметичной оболочки условия неравенства

определяют соответствие эксплуатационной надежности защитной герметичной оболочки на этапах ее испытания (этап приемо-сдачи) и в последующий эксплуатационный период.

Предлагаемое изобретение поясняется чертежами, где даны:

Фиг. 1 - Схема формирования геодезического обоснования (вид с верху).

Фиг. 2 - Схема геодезического обоснования (вид с боку) и размещения контролируемых точек.

Фиг. 3 - Схема формирования геодезического обоснования на обстройке реакторного отделения (вид сверху).

Фиг. 4 - Схема сформированного геодезического обоснования с внешней стороны защитной оболочки.

Фиг. 5 - Схема размещения контрольных и контролируемых точек на обстройке.

Фиг. 6 - Схема выноса центра купола защитной оболочки.

Фиг. 7 - Схема разбивки контролируемых точек на куполе защитной оболочки.

Фиг. 8 - Схема формирования геодезического обоснования в гермообъеме.

Фиг. 9 - Схема восстановления строительных осей защитной оболочки в гермообъеме.

Способ оценки эксплуатационной надежности защитной герметичной оболочки реакторного отделения АЭС, заключающийся в маркировании по заданным сечениям защитной герметичной оболочки контролируемых точек 1 и выполнении поцикловых определений их положения. При этом контролируемые точки привязывают к геодезическим планово-высотным пунктам 2, затем выполняют анализ измерительной информации. При этом планово-высотное геодезическое обоснование формируют многоярусным, как вне сооружения, так и внутри его в единой системе координат, причем данная система координат совмещается с системой координат защитной герметичной оболочки и кроме этого геодезическое обоснование создается с привязкой к осям или образующим капитальных строительных конструкций 3 защитной герметичной оболочки 4 или конструктивных элементов 5 технологического оборудования, установленного в гермообъеме фиг. 1, фиг. 2.

Например, методика построения геодезического обоснования для диагностики герметичной защитной оболочки реакторных отделений с реактором ВВР-1000 заключается в том, что выполняют снесение образующей стены 6 обстройки путем отложения на перекрытии обстройки одинакового расстояния L0 в двух взаимно противоположных точках 7,8 фиг. 3. В последующем данные точки 7,8 маркируются несмываемой краской. На одну из точек, например 7, устанавливают тахеометр, например Elta S-10, центрируют и ориентируют на противолежащую точку 8. От этого начального направления измеряют два угла β1, β2, соответственно на правую и левую образующие цилиндрической части защитной герметичной оболочки фиг. 3.

Вычисляют среднее значение из двух измеренных углов

Затем полученное среднее значение βcp откладывают от направления 7-8 в створе полученного направления 7-9, измеряют расстояние L1. По результатам выполненных измерений определяют радиус R30 герметичной оболочки фиг 3.

Затем вычисляют катеты в треугольнике 7001 из фиг. 3

Далее в створах начального направления 7-8 от точки 7 откладывают отрезок L70, и закрепляют точку O1 маркированием несмываемой краской. Тахеометр переносят и устанавливают на точке О1. На точке О1 строят перпендикуляр к створу 7-8 и закрепляют на внешней поверхности защитной оболочки контролируемые точки 1. Выполнив описанные работы, на четырех сторонах оболочки получают центральную фигуру, у которой точки О совпадают с центром защитной оболочки, a O1 закреплены на перекрытии обстройки, привязаны к образующей стены обстройки и расположены на ее осях (фиг. 4).

Далее точки О1 переносят на стены обстройки, путем построения перпендикуляров от направления 7-8 или по направлению O-O1 (путем его продолжения за точку О1) закрепляют точку 10 на стене обстройки несмываемой краской. Затем выполняют измерение контрольных расстояний L(1-10) (фиг. 5).

Далее вертикальным проектированием точки О1 переносятся на опорное кольцо О (фиг. 5, фиг. 6). Затем тахеометр устанавливают на куполе примерно в центральной его части. Выполняют измерения отрезков вдоль произвольных хорд, расположенных взаимно перпендикулярно друг другу (фиг. 6). Измеряют отрезки, заключенные между станцией стояния тахеометра и краем опорного кольца. Далее вычисляют значения редукции Δ1, Δ2 места положения станции.

где Lc-2 и Lc-3 - соответственно большие отрезки в парах;

Lс-1 и Lc-4 - меньшие отрезки в парах.

Выполнив редукцию на величины Δ1, Δ2 в соответствующих направлениях места положении, станции получают центр купола оболочки. Установив тахеометр на отредуцированный центр купола Оц, выполняют измерения, в частности измеряют длину отрезков, заключенных между Оц и точками О, O, О, O, вынесенными на опорное кольцо с перекрытия обстройки. Если работы были произведены качественно, то с учетом точности измерений получим L=L=L=L и β фиг. 7.

После выполнения перечисленных выше работ выполняют разбивку купола по осевым направлениям и четвертным направлениям (фиг. 2). Для этого переносят точки О на внутреннюю грань опорного кольца и закрепляют окрашиванием. Вдоль каждой оси размещают и маркируют контролируемые точки 1. Четвертные оси разбивают откладыванием углов в 45º от основных осей. Вдоль каждой четвертной оси размещают и маркируют контролируемые точки 1. Затем выполняют нивелирование всех контролируемых точек, расположенных на купольной части защитной оболочки.

Для формирования внутреннего геодезического обоснования для защитной оболочки в гермообъеме выполняют следующие работы. На стационарных строительных конструкциях 11 (железобетонных выгородках, металлических стойках) закрепляют марки выполненных в виде металлических шайб (на чертеже не показаны). Марки размещают и закрепляют по внутренней поверхности защитной оболочки, распределяя их равномерно по окружности на облицовке (фиг. 8). Марки размещают, например, в двух горизонтальных сечениях на отметках 38.000 и 48.000. Затем восстанавливают систему координат защитной оболочки. Для этого в герметичной зоне в любом удобном месте устанавливают тахеометр, имеющий функцию измерения расстояний без отражателя (фиг. 8). При свободном его ориентировании выполняют координирование точек 12 и 13, расположенных на одном из рельсов машины перегрузки топлива МП 1000. По координатам этих точек вычисляют дирекционный угол α12-13 прямой 12-13 в системе координат прибора.

Имея в виду, что рельсовый путь машины перегрузки топлива МП 1000 параллелен оси II-IV реактора. Также известно то, что оси реактора развернуты относительно строительных осей защитной оболочки на угол Δβ. Исходя из этого вычисляют угол γ доворота тахеометра

до параллельного расположения осей его системы координат и строительных осей защитной оболочки фиг. 9. Для контроля повторяют координирование точек 12 и 13 и вычисляют дирекционный угол α12-13, который должен быть равен

После ориентирования инструмента выполняют определение параллельного смещения его осей относительно строительных осей защитной оболочки. Для этого измеряют горизонтальное проложение взаимно перпендикулярных направлениях от станции стояния инструмента до облицовки Lx1, Lx2, Ly1, Ly2 (фиг. 9). Затем вычисляют параметры параллельных смещений систем координат Δ, Δ, которые являются координатами тахеометра в системе координат строительных осей защитной оболочки. Далее последовательно координируют шайбы, расположенные в гермооболочке на строительных конструкциях и на диафрагме защитной оболочки. При этом шайбы, расположенные на строительных конструкциях 11 в гермообъеме, являются геодезическим обоснованием, а расположенные на диафрагме защитной оболочки контролируемыми, по положению которых оцениваются перемещениях на всех соответствующих этапах. Представленная методика создания геодезического обоснования и размещение контролируемых точек 1 может быть реализована на любом жизненном этапе защитной оболочки.

В процессе контроля внутренние и (или) внешние геометрические параметры защитной герметичной оболочки определяют на этапах после полного возведения герметичной защитной оболочки, после выполнения полной программы ее напряжения, при испытании на этапе создания максимального внутреннего давления и в последствии при эксплуатации в период каждого планового предупредительного ремонта, по полученным поэтапным результатам определяют величины перемещений контролируемых точек, в том числе:

где А0, Аобж, Аиспытан - параметры перемещения исследуемых точек на этапах полного возведения оболочки, завершения преднапряжения и испытания;

Аэкспл(1), Аэкспл(i), Аэкспл(i+1) - параметры перемещения исследуемых точек на этапах планово предупредительных ремонтов, последовательно следующих за этапом испытания;

δобж, δиспыт, δэкспл(1), δэкспл(i+1) - соответствующие межэтапные параметры перемещения исследуемых точек;

по параметрам межэтапных перемещений контролируемых точек определяют коэффициент запаса прочности строительных конструкций защитной герметичной оболочки

где Кисх - коэффициент запаса прочности, определенный по результатам реализации этапов преднапряжения и испытания защитной герметичной оболочки;

Ктекущ(i) - коэффициент запаса прочности, определенный по результатам реализации i этапов на стадии эксплуатации защитной герметичной оболочки;

при выполнении для всех строительных конструкций защитной герметичной оболочки условия неравенства

определяют условие соответствия эксплуатационной надежности защитной герметичной оболочки.

Предлагаемое техническое решение способа оценки эксплуатационной надежности защитной герметичной оболочки реакторного отделения АЭС обеспечивает независимый контроль технического состояния защитной оболочки на ее всех возможных жизненных этапах. В то время как штатная (встроенная) система контроля, основанная на использовании датчиков напряжения встраиваемых в арматурный каркас и в тело бетона стены защитной оболочки, как правило, вводится в эксплуатацию с потерей датчиков, которые по тем или иным причинам неработоспособны. Кроме того, вводимые в эксплуатацию датчики встраиваются в армокаркас путем сварки их концевиков с арматурными стержнями (температурные деформации), затем осуществляется бетонирование с вибрированием бетона (вибрационные нагрузки) и, наконец, каждый горизонт, на котором смонтированы датчики, воспринимают выше расположенный собственный вес защитной оболочки, и, естественно, он не одинаков на различных горизонтах (нагрузки от собственного веса защитной оболочки). Тарировка датчиков на стадии эксплуатации защитной оболочки невозможна. Далее заводской гарантийный срок эксплуатации датчиков 15-20 лет. При этом, за каждые пять лет эксплуатации выходят из строя 5-6% датчиков. Таким образом, встроенная штатная система не обеспечивает надежного определения технического состояния защитной оболочки при ее эксплуатации и тем более при продлении срока службы энергетических блоков.

Похожие патенты RU2577555C9

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИОННЫХ ХАРАКТЕРИСТИК ЗАЩИТНОЙ ГЕРМЕТИЧНОЙ ОБОЛОЧКИ 2013
  • Пимшин Юрий Иванович
  • Забазнов Юрий Сергеевич
  • Губеладзе Олег Автандилович
  • Пимшин Петр Юрьевич
RU2546990C1
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИОННЫХ ХАРАКТЕРИСТИК СООРУЖЕНИЙ 2010
  • Пимшин Юрий Иванович
  • Наугольнов Владимир Андреевич
  • Пимшин Иван Юрьевич
  • Забазнов Юрий Сергеевич
  • Яковлев Владимир Викторович
RU2426089C1
СПОСОБ ДИАГНОСТИКИ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ХОДОВОЙ ЧАСТИ МОСТОВОГО КРАНА КРУГОВОГО ДЕЙСТВИЯ 2010
  • Пимшин Юрий Иванович
  • Пимшин Иван Юрьевич
  • Наугольнов Владимир Андреевич
RU2425348C1
СПОСОБ ДИАГНОСТИКИ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ХОДОВОЙ ЧАСТИ МОСТОВЫХ КРАНОВ РАДИАЛЬНОГО ДЕЙСТВИЯ 2008
  • Пимшин Юрий Иванович
  • Пимшин Иван Юрьевич
  • Наугольнов Владимир Андреевич
RU2384831C1
СПОСОБ КОНТРОЛЯ ПОЛОЖЕНИЯ ТРУБОПРОВОДОВ НАДЗЕМНОЙ ПРОКЛАДКИ В УСЛОВИЯХ ВЕЧНОЙ МЕРЗЛОТЫ 2014
  • Лисин Юрий Викторович
  • Ревель-Муроз Павел Александрович
  • Зарипов Зуфар Амирович
  • Сощенко Анатолий Евгеньевич
  • Хабаров Алексей Владимирович
RU2582428C2
СПОСОБ МНОГОПАРАМЕТРОВОГО КОНТРОЛЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ (ТРАНСПОРТНЫХ ТУННЕЛЕЙ, ЗДАНИЙ, СООРУЖЕНИЙ) 2011
  • Будадин Олег Николаевич
  • Крайний Владимир Иванович
  • Сучков Виталий Иванович
  • Троицкий-Марков Тимур Евгеньевич
RU2467318C1
СИСТЕМА ПАССИВНОГО ОТВОДА ТЕПЛА ИЗ ВНУТРЕННЕГО ОБЪЕМА ЗАЩИТНОЙ ОБОЛОЧКИ 2014
  • Безлепкин Владимир Викторович
  • Семашко Сергей Евгеньевич
  • Ивков Игорь Михайлович
  • Алексеев Сергей Борисович
  • Варданидзе Теймураз Георгиевич
  • Петров Юрий Юрьевич
  • Солодовников Александр Сергеевич
  • Крылов Юрий Владимирович
RU2595639C2
СПОСОБ АДАПТИВНОГО ПРОГНОЗИРОВАНИЯ ОСТАТОЧНОГО РЕСУРСА ЭКСПЛУАТАЦИИ СЛОЖНЫХ ОБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Бекаревич Антон Андреевич
  • Будадин Олег Николаевич
  • Морозова Татьяна Юрьевна
  • Топоров Виктор Иванович
RU2533321C1
ПОДВОДНАЯ ЯДЕРНАЯ ТЕРМОЭЛЕКТРИЧЕСКАЯ УСТАНОВКА 2014
  • Водопьянов Олег Владимирович
  • Доронков Владимир Леонидович
  • Зинкевич Максим Иванович
  • Кресов Дмитрий Геннадьевич
  • Марков Александр Сергеевич
  • Неевин Дмитрий Сергеевич
  • Теленков Юрий Константинович
  • Душенков Сергей Борисович
  • Каплар Евгений Петрович
  • Устинов Василий Сергеевич
RU2568433C1
Способ мониторинга технического состояния объектов транспорта газа на основе геоинформационной системы 2021
  • Смирнов Евгений Александрович
  • Свиридов Алексей Михайлович
  • Фомин Александр Владимирович
  • Карабут Юрий Владимирович
  • Блинов Федор Владимирович
  • Горяйнов Максим Сергеевич
  • Гусаров Максим Алексеевич
  • Немов Дмитрий Михайлович
RU2780304C1

Иллюстрации к изобретению RU 2 577 555 C9

Реферат патента 2016 года СПОСОБ ОЦЕНКИ ЭКСПЛУАТАЦИОННОЙ НАДЕЖНОСТИ ЗАЩИТНОЙ ГЕРМЕТИЧНОЙ ОБОЛОЧКИ РЕАКТОРНОГО ОТДЕЛЕНИЯ АЭС

Изобретение относится к области строительства и эксплуатации атомных электрических станций и, в частности, к периоду преднапряжения, испытания и последующей эксплуатации герметичных защитных оболочек реакторных отделений с реактором. Способ заключается в маркировании по заданным сечениям защитной герметичной оболочки контролируемых точек и выполнении поцикловых определений их положения. При этом геодезическое обоснование создается с привязкой к осям или образующим капитальных строительных конструкций защитной герметичной оболочки или конструктивных элементов технологического оборудования, установленного в гермообъеме. В процессе контроля внутренние и (или) внешние геометрические параметры защитной герметичной оболочки определяют на этапах после полного возведения герметичной защитной оболочки, после выполнения полной программы ее напряжения. При испытании на этапе создания максимального внутреннего давления и впоследствии при эксплуатации в период каждого планового предупредительного ремонта, по полученным поэтапным результатам определяют величины межэтапных параметров перемещений исследуемых точек. По параметрам межэтапных перемещений контролируемых точек определяют коэффициент запаса прочности строительных конструкций защитной герметичной оболочки и определяют условие соответствия эксплуатационной надежности защитной герметичной оболочки. Технический результат заключается в повышении точности оценки эксплуатационной надежности защитных герметичных оболочек по результатам их преднапряжения, испытания и в последующий эксплуатационный период. 9 ил.

Формула изобретения RU 2 577 555 C9

Способ оценки эксплуатационной надежности защитной герметичной оболочки реакторного отделения АЭС, заключающийся в маркировании по заданным сечениям защитной герметичной оболочки контролируемых точек и выполнении поцикловых определений их положения, при этом контролируемые точки привязывают к геодезическим планово-высотным пунктам, затем выполняют анализ измерительной информации, при этом планово-высотное геодезическое обоснование формируют многоярусным, как вне сооружения, так и внутри его в единой системе координат, причем данная система координат совмещается с системой координат защитной герметичной оболочки, исследуемые точки размещают в моментной, переходной, безмоментной зонах строительных элементов защитной герметичной оболочки на ее внешней и внутренней поверхностях, контроль геометрических параметров выполняют поэтапно, отличающийся тем, что геодезическое обоснование создается с привязкой к осям или образующим капитальных строительных конструкций защитной герметичной оболочки или конструктивных элементов технологического оборудования, установленного в гермообъеме, в процессе контроля внутренние и (или) внешние геометрические параметры защитной герметичной оболочки определяют на этапах после полного возведения герметичной защитной оболочки, после выполнения полной программы ее напряжения, при испытании на этапе создания максимального внутреннего давления и в последствии при эксплуатации в период каждого планового предупредительного ремонта, по полученным поэтапным результатам определяют величины перемещений контролируемых точек, в том числе:

где А0, Аобж, Аиспытан - параметры перемещения исследуемых точек на этапах полного возведения оболочки, завершения преднапряжения и испытания;
Аэкспл(1), Аэкспл(i), Аэкспл(i+1) - параметры перемещения исследуемых точек на этапах планово предупредительных ремонтов, последовательно следующих за этапом испытания;
δобж, δиспыт, δэкспл(1), δэкспл(i+1) - соответствующие межэтапные параметры перемещения исследуемых точек;
по параметрам межэтапных перемещений контролируемых точек определяют коэффициент запаса прочности строительных конструкций защитной герметичной оболочки


где Кисх - коэффициент запаса прочности, определенный по результатам реализации этапов преднапряжения и испытания защитной герметичной оболочки;
Ктекущ(i) - коэффициент запаса прочности, определенный по результатам реализации i этапов на стадии эксплуатации защитной герметичной оболочки;
при выполнении для всех строительных конструкций защитной герметичной оболочки условия неравенства
Ктекущисх)≥Кнорм,
где Кнорм - нормативный коэффициент запаса прочности;
определяют условие соответствия эксплуатационной надежности защитной герметичной оболочки.

Документы, цитированные в отчете о поиске Патент 2016 года RU2577555C9

СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИОННЫХ ХАРАКТЕРИСТИК СООРУЖЕНИЙ 2010
  • Пимшин Юрий Иванович
  • Наугольнов Владимир Андреевич
  • Пимшин Иван Юрьевич
  • Забазнов Юрий Сергеевич
  • Яковлев Владимир Викторович
RU2426089C1
Способ определения деформаций цилиндрических оболочек 1984
  • Деревщиков Виталий Александрович
SU1196687A1
В.Г
Казачек, Н.В
Нечаев, С.Н
Нотенко, В.И
Римшин, А.Г
Ройтман Обследование и испытание зданий и сооружений
- М., Высш
шк., 2007 г., с.223-227.

RU 2 577 555 C9

Авторы

Пимшин Юрий Иванович

Клюшин Евгений Борисович

Губеладзе Олег Автандилович

Забазнов Юрий Сергеевич

Пимшин Петр Юрьевич

Даты

2016-03-20Публикация

2014-12-22Подача