СПОСОБ ТЕПЛОВИЗИОННОГО ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ТУРБУЛЕНТНОСТИ НЕИЗОТЕРМИЧЕСКОГО ПОТОКА Российский патент 2016 года по МПК G01K13/02 G01J5/60 

Описание патента на изобретение RU2577793C1

Изобретение относится к технической физике, более конкретно к термографии, и может быть использовано при создании технологии тепловизионного определения количественных пульсационных характеристик турбулентности неизотермического потока жидкости путем измерения пространственно-временных параметров нестационарного температурного поля в зоне пограничного слоя.

Известен способ тепловизионной диагностики процессов теплоотдачи (Ru, №2255315 от 16.07.2004, G01K 13/02), включающий измерение температурных полей твердого тела и газового потока, причем измерение температурного поля газового потока, производимое синхронно с измерением температурного поля твердого тела, осуществляют путем размещения в газовом потоке преобразователя температуры в виде сетки таким образом, что обрез сетки находится в пределах толщины пограничного слоя при ламинарном течении газового потока или в пределах толщины вязкого подслоя при турбулентном течении газового потока.

К недостаткам данного способа относится то, что в известном устройстве присутствует сетка - преобразователь температуры, что позволяет выполнять измерения температурного поля только в газовом потоке, так как жидкость является непрозрачной для инфракрасного излучения (ИК), недостоверность и длительное время измерения параметров.

Наиболее близким по технической сущности является способ тепловизионного определения характеристик турбулентности газового потока (Ru, №2400717 от 09.06.2008, G01K 13/02) путем промера температурного поля, характеризующийся тем, что промер температуры осуществляют с помощью тепловизора, получая тепловизионную термовидеограмму горячего газового потока на фоне технологической поверхности, после чего находят последовательное изменение температуры в n-м количестве кадров, взятых из тепловизионного фильма в каждом контрольном пикселе, по которому определяют дисперсию изменения температуры по упомянутым кадрам для каждого контрольного пикселя, задают пороговое значение дисперсии, сравнивают значение дисперсии температуры в каждом контрольном пикселе с пороговым уровнем и по результатам сравнения выделяют контрольные пиксели, принадлежащие области существования факела, по значению дисперсии в которых судят о турбулентности и структуре газового потока.

К недостаткам данного способа относится то, что способ позволяет выполнять измерения температурного поля только в газовом потоке, так как жидкость является непрозрачной для инфракрасного излучения, недостоверность и длительное время измерения параметров.

Технической задачей является разработка способа тепловизионного определения количественных пульсационных характеристик турбулентности неизотермического потока жидкости, позволяющего снимать информацию из узкой (десятки микрон) локальной зоны контакта жидкости с твердой поверхностью стенки, прозрачной для ИК-излучения.

Техническим результатом решения поставленной задачи является идентификация участков турбулентного спектра в зоне пограничного слоя потока жидкости.

Технический результат достигается тем, что в способе тепловизионного определения характеристик турбулентности неизотермического потока жидкости путем промера температурного поля с помощью тепловизора, получая тепловизионную термовидеограмму и находя последовательное изменение температуры в n-м количестве кадров, взятых из цифрового тепловизионного фильма в каждом контрольном пикселе, выбирают сосуд с прозрачной для инфракрасного излучения стенкой, заполняют его жидкостью и осуществляют промер теплового потока в зоне пограничного с внутренней поверхностью стенки сосуда слоя, причем предварительно проводят точную фокусировку макрообъектива на внутренней поверхности стенки сосуда, затем по тепловизионной термовидеограмме определяют зависимость амплитуды пульсаций теплового потока от времени и с помощью прямого преобразования Фурье строят спектральные кривые пульсаций теплового потока в контрольных точках, по которым выделяют и сравнивают частоты изменения теплового потока, после определяют степенной закон и по результатам сравнения идентифицируют участки турбулентного спектра, при этом съемку цифрового тепловизионного фильма проводят с частотой кадров, как минимум вдвое превышающей измеряемую частоту пульсаций теплового потока.

Толщина пограничного участка жидкости составляет около 100 мкм.

На Фиг. 1 изображена блок-схема, поясняющая суть способа тепловизионного определения характеристик турбулентности неизотермического потока жидкости.

На Фиг. 2 изображено устройство для осуществления предложенного способа.

На Фиг. 3 приведен пример термовидеограммы.

На Фиг. 4 приведен пример постановки контрольной точки и график изменения температуры.

Устройство состоит из тепловизионной камеры (1), сосуда с жидкостью (2), инфракрасно-прозрачной стенки (3).

Предложенный способ заключается в следующем.

Объектив тепловизора (1) с малым фокусным расстоянием фокусируют на стенку (3) сосуда (2), прозрачную для ИК-излучения. Плоскостью наведения является внутренняя поверхность стенки (3), точность фокусировки 0,1 мм.

Производят тепловизором (1) съемку цифровой тепловизионной термовидеограммы турбулентного неизотермического течения жидкости - излучения из зоны контакта жидкости со стенкой (3). На Фиг. 3 приведен пример термовидеограммы. Частоту съемки выбирают такой, чтобы ее значение превышало по крайней мере в 2 раза максимальное значение частоты пульсаций, которое требуется измерить. Это связано с тем, что на каждую пульсацию теплового потока должно приходиться не менее двух кадров термовидеограммы для однознозначной идентификации пульсаций. Для стандартных турбулентных спектров воды такое значение - 30-40 Гц.

Выбирают контрольные точки (пиксели) для снятия спектров, после чего находят последовательное изменение температуры в n-м количестве кадров, взятых из цифрового тепловизионного фильма в каждом контрольном пикселе с длительностью съемки не менее нескольких минут. На Фиг. 4 приведен пример постановки контрольной точки и график изменения температуры.

С помощью стандартной программы, реализующей быстрое преобразование Фурье (FFT) (например, в программной среде Python), строят спектральные кривые пульсаций теплового потока, в контрольных точках - зависимости приведенной плотности энергии от частоты пульсаций. Для определения степенного закона и идентификации спектров пульсации жидкости исследуемая функциональная зависимость представляют в двойных логарифмических координатах, где степенные законы соответствуют прямым линиям. На Фиг. 4 представлены спектральные кривые пульсации теплового потока в двойных логарифмических координатах.

По полученным энергетическим спектрам выделяют и сравнивают частоты изменения теплового потока, определяют степенной закон наклона образующей спектральной кривой.

По результатам сравнения идентифицируют участки турбулентного спектра - те участки, на которых угол наклона верхней образующей при наложении касательных совпадает с углом наклона прямой -5/3 (Закон Колмогорова Е(k)~k-5/3 - изображен пунктирной линией на Фиг. 4, где

Е - энергия,

k - волновое число).

На Фиг. 4 представлено визуальное сравнение для идентификации участков турбулентного спектра.

По результатам данного сравнения выделяют контрольные точки, принадлежащие области существования турбулентного течения в пограничном слое жидкости. Определяют количественно диапазон частот, в котором течение жидкости в каждой контрольной точке является турбулентным.

Таким образом, использование данного способа тепловизионного определения количественных пульсационных характеристик турбулентности неизотермического потока жидкости путем измерения пространственно-временных параметров нестационарного температурного поля позволяет идентифицировать участки турбулентного спектра в зоне пограничного слоя потока жидкости, что решает задачу верификации и валидациии расчетных кодов.

Похожие патенты RU2577793C1

название год авторы номер документа
СПОСОБ ТЕПЛОВИЗИОННОГО ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ТУРБУЛЕНТНОСТИ ГАЗОВОГО ПОТОКА 2008
  • Зайков Николай Сергеевич
  • Зайцев Кирилл Валерьевич
  • Жилкин Борис Прокопьевич
  • Кисельников Андрей Юрьевич
  • Коныгин Антон Владимирович
  • Миренский Вячеслав Юрьевич
  • Корзунин Леонид Геннадьевич
  • Вакула Игорь Александрович
RU2400717C2
Способ и устройство тепловизионного определения характеристик теплоотдачи 2018
  • Салова Тамара Юрьевна
  • Кудласевич Андрей Алексеевич
  • Тесленок Семен Константинович
RU2706389C1
СПОСОБ АКТИВНОГО ТЕПЛОВОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ КАЧЕСТВА ОБЪЕКТА 2003
  • Шутов А.Н.
  • Баженов Б.Н.
  • Чумаков А.Г.
  • Мельник Сергей Иванович
RU2235993C1
ТЕРМОГРАФИЧЕСКИЙ СПОСОБ КОНТРОЛЯ ОБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2017
  • Головин Юрий Иванович
  • Головин Дмитрий Юрьевич
  • Бойцов Эрнест Александрович
  • Самодуров Александр Алексеевич
  • Тюрин Александр Иванович
RU2659617C1
СПОСОБ ТЕПЛОВИЗИОННОЙ ДИАГНОСТИКИ ПРОЦЕССОВ ТЕПЛООТДАЧИ 2004
  • Богатова Т.Ф.
  • Еременко Е.А.
  • Ефимова А.В.
  • Жилкин Б.П.
  • Зайцев А.В.
  • Зайцев В.А.
  • Осмаков В.Н.
  • Резинских В.Ф.
  • Хапонен Н.А.
RU2255315C1
СПОСОБ ГРАДУИРОВКИ ПРИБОРОВ ТЕПЛОВИЗИОННЫХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2020
  • Ходунков Вячеслав Петрович
RU2755093C1
СПОСОБ ИССЛЕДОВАНИЯ ВНУТРЕННИХ ОРГАНОВ И ТКАНЕЙ ЧЕЛОВЕКА 2003
  • Соловьев В.А.
  • Болотин Н.Б.
RU2256397C1
СПОСОБ ДИСТАНЦИОННОЙ ДИАГНОСТИКИ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ 2009
  • Каримов Камиль Мидхатович
  • Соколов Владимир Николаевич
  • Онегов Вадим Леонидович
  • Кокутин Сергей Николаевич
  • Каримова Ляиля Камильевна
  • Васев Валерий Федорович
RU2428722C2
СПОСОБ ТЕПЛОВИЗИОННОЙ ДИАГНОСТИКИ ГЕОЛОГИЧЕСКОЙ СРЕДЫ (ВАРИАНТЫ) 2014
  • Каримов Камиль Мидхатович
  • Каримова Ляиля Камильевна
  • Гатауллин Карим Рустемович
RU2556737C1
СПОСОБ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ТЕМПЕРАТУРНОГО ПОЛЯ 2009
  • Манин Анатолий Платонович
  • Поликарпов Сергей Николаевич
  • Попов Сергей Олегович
RU2424496C2

Иллюстрации к изобретению RU 2 577 793 C1

Реферат патента 2016 года СПОСОБ ТЕПЛОВИЗИОННОГО ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ТУРБУЛЕНТНОСТИ НЕИЗОТЕРМИЧЕСКОГО ПОТОКА

Изобретение относится к области термографии и может быть использовано при создании технологии тепловизионного определения количественных пульсационных характеристик турбулентности неизотермического потока жидкости. Согласно заявленному способу осуществляют промер температурного поля с помощью тепловизора, получая тепловизионную термовидеограмму и находя последовательное изменение температуры в n-м количестве кадров, взятых из цифрового тепловизионного фильма в каждом контрольном пикселе. Выбирают сосуд с прозрачной для инфракрасного излучения стенкой, заполняют его жидкостью и осуществляют промер теплового потока в зоне пограничного с внутренней поверхностью стенки сосуда слоя. Причем предварительно проводят точную фокусировку макрообъектива на внутренней поверхности стенки сосуда. Затем по тепловизионной термовидеограмме определяют зависимость амплитуды пульсаций теплового потока от времени и с помощью прямого преобразования Фурье строят спектральные кривые пульсаций теплового потока в контрольных точках, по которым выделяют и сравнивают частоты изменения теплового потока. После определяют степенной закон и по результатам сравнения идентифицируют участки турбулентного спектра. Съемку цифрового тепловизионного фильма проводят с частотой кадров, как минимум вдвое превышающей измеряемую частоту пульсаций теплового потока. Технический результат - повышение точности и достоверности получаемых данных. 1 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 577 793 C1

1. Способ тепловизионного определения характеристик турбулентности неизотермического потока путем промера температурного поля потока с помощью тепловизора, получения тепловизионной термовидеограммы и нахождения последовательного изменения температуры в n-м количестве кадров, взятых из цифрового тепловизионного фильма в каждом контрольном пикселе, отличающийся тем, что выбирают сосуд с прозрачной для инфракрасного излучения стенкой, заполняют его жидкостью и осуществляют промер теплового потока в зоне пограничного с внутренней поверхностью стенки сосуда слоя, причем предварительно проводят точную фокусировку макрообъектива на внутренней поверхности стенки сосуда, затем по тепловизионной термовидеограмме определяют зависимость амплитуды пульсаций теплового потока от времени и с помощью прямого преобразования Фурье строят спектральные кривые пульсаций теплового потока в контрольных точках, по которым выделяют и сравнивают частоты изменения теплового потока, после определяют степенной закон и по результатам сравнения идентифицируют участки турбулентного спектра, при этом съемку цифрового тепловизионного фильма проводят с частотой кадров, как минимум вдвое превышающей измеряемую частоту пульсаций теплового потока.

2. Способ тепловизионного определения характеристик турбулентности неизотермического потока по п. 1, отличающийся тем, что толщина пограничного участка жидкости составляет около 100 мкм.

Документы, цитированные в отчете о поиске Патент 2016 года RU2577793C1

СПОСОБ ТЕПЛОВИЗИОННОГО ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ТУРБУЛЕНТНОСТИ ГАЗОВОГО ПОТОКА 2008
  • Зайков Николай Сергеевич
  • Зайцев Кирилл Валерьевич
  • Жилкин Борис Прокопьевич
  • Кисельников Андрей Юрьевич
  • Коныгин Антон Владимирович
  • Миренский Вячеслав Юрьевич
  • Корзунин Леонид Геннадьевич
  • Вакула Игорь Александрович
RU2400717C2
СПОСОБ ТЕПЛОВИЗИОННОЙ ДИАГНОСТИКИ ПРОЦЕССОВ ТЕПЛООТДАЧИ 2004
  • Богатова Т.Ф.
  • Еременко Е.А.
  • Ефимова А.В.
  • Жилкин Б.П.
  • Зайцев А.В.
  • Зайцев В.А.
  • Осмаков В.Н.
  • Резинских В.Ф.
  • Хапонен Н.А.
RU2255315C1
DE 4422413 A1, 04.01.1996
WO 2001022045 A1, 29.03.2001
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРНОГО ПОЛЯ ГАЗОВОГО ПОТОКА 2002
  • Жилкин Б.П.
  • Ларионов И.Д.
  • Шуба А.Н.
RU2230300C2

RU 2 577 793 C1

Авторы

Большухин Михаил Александрович

Знаменская Ирина Александровна

Крепков Владимир Павлович

Свешников Дмитрий Николаевич

Фомичев Владимир Иванович

Даты

2016-03-20Публикация

2014-09-30Подача