Изобретение относится к подводному судостроению и касается носовых оконечностей корпуса, надстроек и боевой рубки подводной лодки.
Известен способ повышения скорости подводной лодки в погруженном состоянии, заключающийся в том, что носовую оконечность корпуса и боевой рубки выполняют соответственно в горизонтальных продольных сечениях в форме полуэллипсов с максимальными радиусами большой и малой полуосей
Известный способ повышения скорости подводной лодки реализован в устройстве корпуса и боевой рубки подводной лодки-ракетоносца типа «Джордж Вашингтон» (США), носовая оконечность которых выполнена в горизонтальных продольных сечениях в форме полуэллипсов соответственно с максимальными радиусами большой и малой полуосей
Эллипсоидная носовая оконечность корпуса подводной лодки и полуэллипсное поперечное горизонтальное сечение боевой рубки создает крайне неравномерное контактное напряжение носовой оконечности корпуса и боевой рубки с водой при движении: максимальные напряжения сопротивления воды движению подводной лодки в носовой части корпуса и боевой рубки с малым радиусом эллипсных сечений
Известен способ повышения скорости подводной лодки в погруженном состоянии, заключающийся в том, что носовую оконечность корпуса выполняют в горизонтальных продольных сечениях в форме полуэллипсов
соответственно с максимальными радиусами большой и малой полуосей Rэл=bK, rэл=а
K, а носовую оконечность корпуса в вертикальных продольных сечениях выполняют в форме полуокружностей с максимальным радиусом
Известный способ повышения скорости подводной лодки реализован в устройстве носовой оконечности ее корпуса и боевой рубки, которые изготовлены в горизонтальных продольных сечениях в форме полуэллипсов
соответственно с максимальными радиусами большой и малой полуосей Rэл=bК, rэл=а
K, а носовая оконечность корпуса в вертикальных продольных сечениях изготовлена в форме полуокружностей с максимальным радиусом
Полусферическая поверхность носовой оконечности корпуса подводной лодки позволяет осуществлять работу конформно-покровных антенн с минимальными гидроакустическими помехами, однако максимальный радиус
Технический результат по способу повышения скорости подводной лодки, заключающемуся в том, что носовую оконечность корпуса и боевой рубки выполняют закругленными под соответствующими максимальными радиусами
Теоретические основы «Физики материального контактного взаимодействия» свидетельствуют о возможности создания равномерного напряжения на поверхности контакта двух сред, выполненной полусферической и углом φ° между осью контакта и образующим радиусом Rсф сферического сектора контакта, равным углу внутреннего трения деформируемой материальной среды [3]. Угол внутреннего трения воды, как жидкокристаллической материальной среды, деформируемой носовой оконечностью корпуса подводной лодки и ее боевой рубки, составляет величину на глубине свыше 80 см, равную ∡φ≈45°. Таким образом, при движении перед корпусом подводной лодки и ее боевой рубки создается равномерное контактное напряжение, что резко снижает гидродинамическое сопротивление воды движению подводной лодки и создает наилучшие условия работы конформно-покровных антенн.
Технический результат по устройству повышения скорости подводной лодки, состоящему из цилиндрического корпуса подводной лодки с радиусом поперечного сечения Rц, носовой оконечности корпуса с конформно-покровными антеннами, из боевой рубки, носовая оконечность корпуса и боевой рубки выполнена закругленной под соответствующими максимальными радиусами
Предлагаемая конструкция носовой оконечности корпуса и боевой рубки подводной лодки позволяет резко снизить турбулентность и гидродинамическое сопротивление воды движению лодки, а с другой стороны полусферическая поверхность корпуса обеспечивает наилучшие условия эксплуатации конформно-покровных антенн гидроакустического комплекса.
Предлагаемые изобретения поясняются графическими материалами, где на фиг. 1 - общий вид предлагаемого цилиндрического корпуса подводной лодки и ее боевой рубки; фиг. 2 - вид А фиг. 1 корпуса подводной лодки с боевой рубкой; на фиг. 3 - вид А носовой полусферической оконечности боевой рубки и корпуса известной подводной лодки, совмещенный с эпюрой контактных избыточных седлообразных напряжений
Предлагаемая конструкция подводной лодки состоит из цилиндрического корпуса 1 (фиг. 1) радиусом RЦ с полусферической носовой оконечностью 2 радиусом Rсф выполненной в форме поверхности сферического сектора (фиг. 1 и фиг. 2) радиусом Rсф=1,4142·RЦ=RЦ/sinφ°, где ∡φ=45° - угол между продольной осью корпуса 1 и образующим радиусом Rсф сферического сектора носовой оконечности корпуса 1. Носовая оконечность 3 боевой рубки 4 выполнена в горизонтальных продольных сечениях в форме поверхности кругового сектора с максимальным радиусом
Способ повышения скорости подводной лодки предлагаемой конструкции (фиг. 1 и фиг. 2) реализуется следующим образом. Цилиндрический корпус 1 подводной лодки радиусом RЦ изготавливают с полусферической носовой оконечностью 2 радиусом Rсф, которую выполняют в форме поверхности сферического сектора радиусом Rсф=1,4142·RЦ=RЦ/sinφ°, где ∡=45° - угол между продольной осью корпуса 1 и образующим радиусом Rсф сферического сектора носовой оконечности корпуса 1. Носовую оконечность 3 боевой рубки 4 выполняют в горизонтальных продольных сечениях в форме поверхности кругового сектора с максимальным радиусом
Известные конструкции носовых оконечностей 2 подводных лодок полусферической (фиг. 3) и эллипсоидной (фиг. 4) формы при движении подводной лодки в погруженном состоянии создают крайне неравномерные соответственно седлообразные и параболические (выпуклые) эпюры контактных избыточных напряжений
Источники информации
1. Политехнический словарь. Гл. ред. И.И. Артоболевский. - М.: «Советская Энциклопедия», 1977. - С. 371 («подводная лодка»).
2. Патент РФ №2115587. Носовая оконечность подводной лодки: // Ионин B.C., Воробьева Л.Д., Гришман Г.Д. и др., B63G 8/00, В63В 3/00, от 14.12.1992.
3. Хрусталев Е.Н. Контактное взаимодействие в геомеханике. ч. II: Напряжения и деформации оснований сооружений: Монография. - Тверь: Научная книга, 2007. - С. 71-72 (рис. 2.8).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОВЫШЕНИЯ ПРОХОДИМОСТИ ДВИЖИТЕЛЯ ВОЕННОЙ ТЕХНИКИ И УСТРОЙСТВО ДВИЖИТЕЛЯ ВОЕННОЙ ТЕХНИКИ | 2013 |
|
RU2534497C1 |
НОСОВАЯ ОКОНЕЧНОСТЬ ПОДВОДНОЙ ЛОДКИ | 1992 |
|
RU2115587C1 |
СПОСОБ ПОВЫШЕНИЯ СКОРОСТИ СУДНА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2014 |
|
RU2566321C1 |
СПОСОБ ПОВЫШЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ ОСНОВАНИЯ СООРУЖЕНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2007 |
|
RU2376417C2 |
СПОСОБ СООРУЖЕНИЯ ФУНДАМЕНТА ПОД МАШИНЫ И УСТРОЙСТВО ФУНДАМЕНТА ПОД МАШИНЫ | 2008 |
|
RU2392386C2 |
СПОСОБЫ СООРУЖЕНИЯ ОСНОВАНИЯ И ДНИЩА КРУПНОГО РЕЗЕРВУАРА И ИХ УСТРОЙСТВА | 2008 |
|
RU2393300C2 |
НОСОВАЯ ОКОНЕЧНОСТЬ ПОДВОДНОЙ ЛОДКИ | 2002 |
|
RU2225324C1 |
СПОСОБ ПОВЫШЕНИЯ ПРОХОДИМОСТИ ДВИЖИТЕЛЯ ВОЕННОЙ ТЕХНИКИ И УСТРОЙСТВО ДВИЖИТЕЛЯ ВОЕННОЙ ТЕХНИКИ | 2013 |
|
RU2536267C1 |
СПОСОБ СООРУЖЕНИЯ ЖЕЛЕЗНОДОРОЖНОГО ПУТИ И УСТРОЙСТВО ЖЕЛЕЗНОДОРОЖНОГО ПУТИ | 2008 |
|
RU2365697C1 |
СПОСОБ ХРУСТАЛЁВА Е.Н. ПОЛУЧЕНИЯ РАВНОМЕРНОГО КОНТАКТНОГО НАПРЯЖЕНИЯ ПРИ ВЗАИМОДЕЙСТВИИ МАТЕРИАЛЬНЫХ СРЕД | 2014 |
|
RU2576542C2 |
Изобретение относится к подводному судостроению и касается носовых оконечностей корпуса, надстроек и боевой рубки подводной лодки. Устройство повышения скорости подводной лодки состоит из цилиндрического корпуса подводной лодки с радиусом поперечного сечения RЦ носовой оконечности корпуса с конформно-покровными антеннами, из боевой рубки. Носовая оконечность корпуса подводной лодки выполнена в форме поверхности сферического сектора, а носовая оконечность боевой рубки выполнена в горизонтальных продольных сечениях в форме поверхности кругового сектора. Для повышения скорости подводной лодки носовую оконечность корпуса и боевую рубку выполняют закругленными под соответствующими максимальными радиусами горизонтальных, продольных сечений. Носовую оконечность корпуса подводной лодки выполняют в форме поверхности сферического сектора, а носовую оконечность боевой рубки выполняют в горизонтальных, продольных сечениях в форме поверхности кругового сектора. Достигается повышение скорости подводной лодки. 2 н.п. ф-лы, 4 ил.
1. Способ повышения скорости подводной лодки, заключающийся в том, что носовую оконечность корпуса и боевой рубки выполняют закругленными под соответствующими максимальными радиусами и горизонтальных продольных сечений, а носовую оконечность корпуса выполняют закругленной под максимальным радиусом вертикальных продольных сечений, равным радиусу RЦ поперечного сечения корпуса, отличающийся тем, что носовую оконечность корпуса подводной лодки выполняют в форме поверхности сферического сектора радиусом Rсф=1,4142·RЦ=RЦ/sinφ°, где ∡φ=45° - угол между продольной осью корпуса и образующим радиусом Rсф сферического сектора носовой оконечности корпуса, носовую оконечность боевой рубки выполняют в горизонтальных продольных сечениях в форме поверхности кругового сектора радиусом , где В - ширина боевой рубки в горизонтальном сечении, а в вертикальных продольных сечениях - в форме поверхности кругового сектора радиусом где Н - высота боевой рубки.
2. Устройство для реализации способа по п.1, состоящее из цилиндрического корпуса подводной лодки с радиусом поперечного сечения RЦ носовой оконечности корпуса с конформно-покровными антеннами, из боевой рубки, носовая оконечность корпуса и боевой рубки выполнена закругленной под соответствующими максимальными радиусами и горизонтальных продольных сечений, а носовая оконечность корпуса выполнена закругленной под максимальным радиусом вертикальных продольных сечений, равным радиусу RЦ поперечного сечения корпуса, отличающееся тем, что носовая оконечность корпуса подводной лодки выполнена в форме поверхности сферического сектора радиусом Rсф=1,4142·RЦ=RЦ/sinφ°, где ∡φ=45° - угол между продольной осью корпуса и образующим радиусом Rсф сферического сектора носовой оконечности корпуса, носовая оконечность боевой рубки выполнена в горизонтальных продольных сечениях в форме поверхности кругового сектора с максимальным радиусом , где В - ширина основания боевой рубки в горизонтальном сечении, а в вертикальных продольных сечениях - в форме поверхности кругового сектора радиусом , где Н - высота корпуса боевой рубки.
НОСОВАЯ ОКОНЕЧНОСТЬ ПОДВОДНОЙ ЛОДКИ | 1992 |
|
RU2115587C1 |
НОСОВАЯ ОКОНЕЧНОСТЬ ПОДВОДНОЙ ЛОДКИ | 1998 |
|
RU2130402C1 |
US 3104641 A1, 24.09.1963. |
Авторы
Даты
2016-03-20—Публикация
2014-07-07—Подача