ФАЗОВЫЙ СПОСОБ ФОРМИРОВАНИЯ ПРОВАЛОВ В ДИАГРАММЕ НАПРАВЛЕННОСТИ ПЛОСКОЙ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ Российский патент 2016 года по МПК H01Q3/26 

Описание патента на изобретение RU2579610C2

Изобретение относится к антенной технике и может быть использовано для решения задачи формирования провалов в диаграммах направленности (ДН) плоских фазированных антенных решеток (ФАР) путем изменения лишь фаз возбуждений ее элементов.

Известен способ [El-Azhary, M.S.Afifi, and P.S.Excell, A simple algorithm for sidelobe cancellation in a partially adaptive linear array, / IEEE Transactions on Antennas and Propagation, vol. Ap-36, No.10, October 1988, pp.1484-1486], в котором используются крайние элементы решетки для формирования протяженной области подавления боковых лепестков ДН линейной ФАР. Суть этого способа заключается в том, что сигналы, проходящие через крайние элементы, получают фазовые сдвиги, равные по величине, но противоположные по знаку. Максимум ДН, образуемой крайними элементами, смещается так, чтобы он совпал с направлением максимума подавляемого бокового лепестка, угловой диапазон которого охватывает направление прихода сигнала помехи. При этом амплитудная составляющая дополнительной ДН умножается на константу, чтобы дополнительная ДН имела одинаковую амплитуду с подавляемым боковым лепестком ДН всей решетки. Фазовая составляющая дополнительной ДН в области подавляемого бокового лепестка должна отличаться на 180° от фазовой составляющей подавляемого бокового лепестка ДН всей решетки.

Наиболее близким по технической сущности к предлагаемому способу является «Способ формирования нуля диаграммы направленности фазированной антенной решетки» [RU 2123743 C1, опубл. 20.12.1998 г.], основанный на оценке уровня ненормированной исходной диаграммы направленности N-элементной ФАР в направлении помехи f(θn), выделении двух адаптивных M-элементных подрешеток, расположенных на краях исходной, с учетом условия 2M≥f(θn), и введении фазовых поправок в элементы адаптивных подрешеток, причем фазовые поправки для m-ой от края пары излучателей (m=1,2,…M) выбираются в соответствии с соотношением

где:

λ, x0 - длина волны и шаг решетки;

θ - угол, отсчитываемый от нормали к раскрыву;

θ0, θп - направление главного максимума и помехи соответственно. Знак минус в соотношении соответствует элементам левой адаптивной подрешетки, а знак плюс - правой.

Недостатком обоих известных способов является то, что с их помощью нельзя сформировать несколько провалов.

Техническим результатом предлагаемого способа является формирование провалов в ДН плоской ФАР в нескольких заданных направлениях, имеющих угловые координаты в сферической системе координат (θнапр i, φнапр i), причем фазы сигналов, проходящих через крайние элементы эквивалентного линейного раскрыва этой ФАР, изменяют на постоянную величину, что позволяет упростить и ускорить процесс формирования нескольких провалов.

Сущность предлагаемого фазового способа формирования провалов в ДН плоской ФАР состоит в оценке уровня исходной диаграммы направленности N-элементной ФАР, выделении в раскрыве двух M-элементных подрешеток и введении фазовых поправок, со знаком минус для элементов одной подрешетки и со знаком плюс для элементов другой подрешетки.

Новым в заявляемом изобретении является то, что оценку уровня исходной диаграммы направленности N-элементной ФАР осуществляют в К заданных направлениях, которые задают двумя угловыми координатами θнапр I и φнапр i, выбирают К эквивалентных линейных раскрывов, углы которых равны значениям координат К направлений φнапр I, вычисляют возбуждение этих раскрывов, после выделения в каждом эквивалентном линейном раскрыве двух M-элементных подрешеток, расположенных на его краях, величины их фазовых поправок выбирают равными по абсолютному значению из условия заданных глубины, ширины и координаты θнапр i провала, фазы элементов ФАР, образующих M-элементные подрешетки К эквивалентных линейных раскрывов, изменяют на величину фазовых поправок этих подрешеток, при условии что M-элементные подрешетки К эквивалентных линейных раскрывов формируются несовпадающими элементами ФАР, где θнапр i и φнапр i - заданные направления в сферической системе координат, a θнапр i, отсчитывается от нормали к плоскости раскрыва ФАР; i - порядковый номер заданного направления, i=1…К; К - количество заданных направлений.

На Фиг.1 показан пример плоской ФАР с вариантами формирования эквивалентных линейных раскрывов при К=3, где К - количество заданных направлений, равное количеству эквивалентных линейных раскрывов; i - порядковый номер заданного направления и соответствующего эквивалентного линейного раскрыва, i=1…К; φнапр 1, 2, 3 - углы эквивалентных линейных раскрывов, М - число элементов в подрешетках эквивалентных линейных раскрывов.

На Фиг.2 приведены:

а) - ФАР с эллиптической формой раскрыва, на которой расположены N=1458 элементов с равномерным фазовым распределением;

б) - пространственная ДН ФАР. Здесь и далее пространственные ДН ФАР приведены в координатах направляющих косинусов u, v, где u=sin(θ)cos(φ), v=sin(θ)sin(φ), прямыми линиями показаны сечения;

в) - ДН ФАР в азимутальном сечении (φ=0°). Здесь и далее, если не указано иное, при отображении ДН в каком-либо сечении по оси абсцисс отложена переменная θ в градусах;

г) - ДН ФАР в угломестном сечении (φ=90°).

На Фиг.3 приведен пример формирования двух провалов в ортогональных сечениях ДН ФАР, где

а) - раскрыв ФАР с фазовым распределением, измененным в соответствии с двумя эквивалентными линейными раскрывами, углы которых равны φнапр 1=0° и φнапр 2=90°, пронумерованные области показывают элементы с измененными фазами для формирования провалов с соответствующими номерами;

б) - пространственная ДН, координаты центров провалов: θнапр 1≈6°, φнапр 1=0° (uнапр 1=0.105, vнапр 1=0), θнапр 2≈16°, φнапр 2=90° (uнапр 2=0, vнапр 2=0.276), здесь и далее: центры окружностей указывают на центры провалов;

в) - ДН в сечении, угол которого равен значению координаты φнапр 1=0° для ФАР с измененным фазовым распределением (жирная линия), здесь и далее: ДН в данном сечении для ФАР с равномерным фазовым распределением показана тонкой линией, стрелка указывает направление центра провала в данном сечении;

г) - ДН в сечении, угол которого равен значению координаты φнапр 2=90°.

На Фиг.4 приведен пример формирования двух провалов в неортогональных сечениях ДН ФАР, где

а) - раскрыв ФАР с фазовым распределением, измененным в соответствии с двумя эквивалентными линейными раскрывами, углы которых равны φнапр 1=0° и φнапр 2=60°;

б) - пространственная ДН, координаты центров провалов: θнапр 1≈6°, φнапр 1=0° (uнапр 1=0.105, vнапр 1=0), θнапр 2≈15°, φнапр 2=60° (uнапр 2=0.129, vнапр 2=0.226);

в) - ДН в сечении, угол которого равен значению координаты φнапр 1=0°;

г) - ДН в сечении, угол которого равен значению координаты φнапр 2=60°

На Фиг.5 приведен пример формирования трех провалов в ДН ФАР, где

а) - раскрыв ФАР с фазовым распределением, измененным в соответствии с тремя эквивалентными линейными раскрывами, углы которых равны φнапр 1=0°, φнапр 2=45°, φнапр 3=90°, пронумерованные области показывают элементы с измененными фазами для формирования провалов с соответствующими номерами;

б) - пространственная ДН, координаты центров провалов: θнапр 1≈14°, φнапр 1=0° (uнапр 1=0.242, vнапр 1=0), θнапр 2≈25°, φнапр 2=45° (uнапр 2=0.299, vнапр 2=0.299); φнапр 3=90° (uнапр 3=0, vнапр 3=0,309);

в) - ДН в сечении, угол которого равен значению координаты φнапр 1=0°;

г) - ДН в сечении, угол которого равен значению координаты φнапр 2=45°;

д) - ДН в сечении, угол которого равен значению координаты φнапр 2=90°.

На Фиг.6 приведен пример формирования двух провалов в ортогональных сечениях ДН ФАР при сканировании, где

а) - пространственная ДН, координаты центров провалов: θнапр 1≈6°, φнапр 1=0° (uнапр 1=0.105, vнапр 1=0), θнапр 2≈15°, φнапр 2=90° (uнапр 2=0, vнапр 2=0.259);

б) - та же пространственная ДН, но после сканирования на угол θ1=30°, φ 1=0° (u 1=0.5, v 1=0);

в) - ДН в сечении v=0, по оси абсцисс отложена переменная и;

г) - ДН в сечении u=0.5, по оси абсцисс отложена переменная v.

Характерной чертой данного метода является неизменность возбуждения основной части элементов ФАР, поскольку возбуждение меняется лишь у тех элементов ФАР, которые образуют крайние элементы эквивалентных линейных раскрывов. При этом угловое положение центров провалов относительно луча ДН в системе координат направляющих косинусов (и, v) и величина подавления в центре каждого провала сохраняются при сканировании.

На Фиг.2а показана ФАР, имеющая раскрыв эллиптической формы, на котором расположены N=1458 элементов. В раскрыве ФАР создано спадающее к краям амплитудное распределение с КИП≈0.9. На Фиг.2б, в, г приведены пространственная ДН ФАР и ДН в главных - азимутальном и угломестном - сечениях. Исходный уровень максимальных боковых лепестков ДН при синфазном распределении составляет ≈-28дБ.

Используя предложенный способ можно одновременно формировать несколько (К) провалов в сечениях ДН, углы которых равны значениям координат φнапр i. Для этого вычисляют возбуждение К соответствующих эквивалентных линейных раскрывов (Фиг.1) и в ДН каждого из них формируют провал в направлении θнапр i - фазовые поправки, вычисленные для формирования провалов, вносят на элементы ФАР, образующие данный эквивалентный линейный раскрыв. Это иллюстрируется примером формирования 2-х провалов (К=2) в ортогональных сечениях (Фиг.3а-г). На Фиг.3а видно, что подрешетки эквивалентных линейных раскрывов образуют несовпадающие элементы раскрыва ФАР. В эквивалентном линейном, обеспечивающем формирование провала в направлении f=i (θнапр 1≈6°), число элементов в каждой из двух подрешеток М=9, в эквивалентном линейном раскрыве (i=2, θнапр 2≈16°)-M=3. В данном примере снижение бокового излучения в центре каждого провала составило более 16дБ. Величина подъема бокового излучения с противоположных относительно луча ДН и формируемого провала сторон составила ≈5-7 дБ. Снижение уровня луча ФАР составляет приблизительно 0.12 дБ.

Провалы могут формироваться не только в ортогональных, но и в других сечениях при условии, что подрешетки эквивалентных линейных раскрывов формируются несовпадающими элементами ФАР. Пример формирования двух провалов (К=2) в азимутальном сечении (φнапр 1=0°) и сечении с углом φнапр 2=60° приведен на Фиг.4а-г. Случай формирования провалов в трех сечениях (К=3) представлен на Фиг.5а-г. Постоянство угловых положений центров провалов относительно луча ДН и величины подавления в центре каждого провала при сканировании подтверждается Фиг.6а-г.

Предлагаемый способ обеспечивает формирование нескольких провалов в ДН плоских ФАР в нескольких заданных направлениях, имеющих угловые координаты (θнапр i, φнапр i) в сферической системе координат. Кроме того, фазы сигналов, проходящих через крайние элементы эквивалентного линейного раскрыва этой ФАР, изменяют на постоянную величину, что позволяет упростить и ускорить процесс формирования провалов.

Похожие патенты RU2579610C2

название год авторы номер документа
ФАЗОВЫЙ СПОСОБ ФОРМИРОВАНИЯ ПРОВАЛА В ДИАГРАММЕ НАПРАВЛЕННОСТИ ПЛОСКОЙ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ 2010
  • Грибанов Александр Николаевич
  • Мосейчук Георгий Феодосьевич
  • Гаврилова Светлана Евгеньевна
  • Павленко Екатерина Анатольевна
  • Чубанова Ольга Александровна
RU2457589C1
СПОСОБ ПОДАВЛЕНИЯ БОКОВЫХ ЛЕПЕСТКОВ ДИАГРАММЫ НАПРАВЛЕННОСТИ ЛИНЕЙНОЙ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ 2010
  • Гаврилова Светлана Евгеньевна
  • Грибанов Александр Николаевич
  • Мосейчук Георгий Феодосьевич
  • Чубанова Ольга Александровна
RU2431222C1
СПОСОБ ФОРМИРОВАНИЯ НУЛЯ ДИАГРАММЫ НАПРАВЛЕННОСТИ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ 1998
  • Мануилов Б.Д.
  • Башлы П.Н.
  • Гладушенко С.Г.
RU2123743C1
СПОСОБ ФОРМИРОВАНИЯ ПРОВАЛОВ В НАПРАВЛЕНИЯХ ИСТОЧНИКОВ ПОМЕХ В ДИАГРАММАХ НАПРАВЛЕННОСТИ ПЛОСКИХ ФАЗИРОВАННЫХ АНТЕННЫХ РЕШЕТОК С НЕПРЯМОУГОЛЬНОЙ ГРАНИЦЕЙ РАСКРЫВА 2013
  • Мануилов Борис Дмитриевич
  • Падий Александр Юрьевич
RU2559763C2
СПОСОБ ФОРМИРОВАНИЯ ПРОВАЛОВ В ДИАГРАММАХ НАПРАВЛЕННОСТИ ФАЗИРОВАННЫХ АНТЕННЫХ РЕШЕТОК В НАПРАВЛЕНИЯХ ИСТОЧНИКОВ ПОМЕХ 2012
  • Мануилов Борис Дмитриевич
  • Падий Александр Юрьевич
RU2507646C1
СПОСОБ ФОРМИРОВАНИЯ КОМПЕНСАЦИОННОЙ ДИАГРАММЫ НАПРАВЛЕННОСТИ В ПЛОСКОЙ АНТЕННОЙ РЕШЕТКЕ С ЭЛЕКТРОННЫМ УПРАВЛЕНИЕМ ЛУЧОМ 2023
  • Мищенко Сергей Евгеньевич
  • Шацкий Николай Витальевич
  • Шацкий Виталий Николаевич
  • Жуков Александр Олегович
  • Трофимов Раиль Владимирович
RU2810696C1
Способ формирования остронаправленных сканирующих компенсационных диаграмм направленности в плоской фазированной антенной решетке с пространственным возбуждением 2020
  • Калашников Роман Васильевич
  • Лаврентьев Александр Михайлович
RU2755642C1
СПОСОБ РАЗДЕЛЬНОГО ФОРМИРОВАНИЯ НУЛЕЙ В СУММАРНОЙ И РАЗНОСТНОЙ ДИАГРАММАХ НАПРАВЛЕННОСТИ МОНОИМПУЛЬСНОЙ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ 2001
  • Мануилов Б.Д.
  • Башлы П.Н.
  • Климухин Д.В.
RU2195054C2
УСТРОЙСТВО КОНТРОЛЯ ПАРАМЕТРОВ СХЕМЫ РАЗВЕДЕНИЯ ПЕЛЕНГАЦИОННЫХ ЛУЧЕЙ 1989
  • Подволоцкий Виктор Васильевич
  • Филоненко Александр Борисович
  • Маргулис Давид Семенович
  • Троцко Валентина Андреевна
SU1841118A1
ФАЗИРОВАННАЯ АНТЕННАЯ РЕШЕТКА С УПРАВЛЯЕМОЙ ШИРИНОЙ ДИАГРАММЫ НАПРАВЛЕННОСТИ 2012
  • Кортнев Валерий Павлович
RU2507647C1

Иллюстрации к изобретению RU 2 579 610 C2

Реферат патента 2016 года ФАЗОВЫЙ СПОСОБ ФОРМИРОВАНИЯ ПРОВАЛОВ В ДИАГРАММЕ НАПРАВЛЕННОСТИ ПЛОСКОЙ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ

Изобретение относится к антенной технике. Техническим результатом является формирование провалов в диаграммах направленности (ДН) плоских фазированных антенных решеток (ФАР) в нескольких заданных направлениях, имеющих угловые координаты в сферической системе кординат. Способ формирования провалов в ДН плоской ФАР состоит в оценке уровня исходной диаграммы направленности N-элементной ФАР, выделении в раскрыве двух M-элементных подрешеток и введении фазовых поправок, со знаком минус для элементов одной подрешетки и со знаком плюс для элементов другой подрешетки. Для формирования провалов в ДН плоской ФАР в нескольких заданных направлениях оценку уровня исходной диаграммы направленности N-элементной ФАР осуществляют в К заданных направлениях, которые задают двумя угловыми координатами θнапр i и φнапр I, выбирают К эквивалентных линейных раскрывов, углы которых равны значениям координат К направлений φнапр i, вычисляют возбуждение этих раскрывов, после выделения в каждом эквивалентном линейном раскрыве двух M-элементных подрешеток, расположенных на его краях, величины их фазовых поправок выбирают равными по абсолютному значению из условия заданных глубины, ширины и координаты θнапр i провала. Фазовые поправки, вычисленные для формирования провалов, вносят на элементы ФАР, образующие данный эквивалентный линейный раскрыв, при условии что M-элементные подрешетки К эквивалентных линейных раскрывов формируются несовпадающими элементами ФАР, где θнапр i и φнапр i - заданные направления в сферической системе координат, a θнапр i отсчитывается от нормали к плоскости раскрыва ФАР; i - порядковый номер заданного направления, i=1…К; К - количество заданных направлений. 22 ил.

Формула изобретения RU 2 579 610 C2

Фазовый способ формирования провалов в диаграмме направленности плоской фазированной антенной решетки (ФАР), основанный на оценке уровня исходной диаграммы направленности N-элементной ФАР, выделении в раскрыве двух M-элементных подрешеток и введении фазовых поправок, со знаком минус для элементов одной подрешетки и со знаком плюс для элементов другой подрешетки, отличающийся тем, что оценку уровня исходной диаграммы направленности N-элементной ФАР осуществляют в К заданных направлениях, которые задают двумя угловыми координатами θнапр i и φнапр i, выбирают К эквивалентных линейных раскрывов, углы которых равны значениям координат К направлений φнапр i, вычисляют возбуждение этих раскрывов, после выделения в каждом эквивалентном линейном раскрыве двух M-элементных подрешеток, расположенных на его краях, величины их фазовых поправок выбирают равными по абсолютному значению из условия заданных глубины, ширины и координаты θнапр i провала, фазовые поправки, вычисленные для формирования провалов, вносят на элементы ФАР, образующие данный эквивалентный линейный раскрыв, при условии что M-элементные подрешетки К эквивалентных линейных раскрывов формируются несовпадающими элементами ФАР, где
θнапр i и φнапр i - заданные направления в сферической системе координат, а θнапр i отсчитывается от нормали к плоскости раскрыва ФАР;
i - порядковый номер заданного направления, i=1…К;
К - количество заданных направлений.

Документы, цитированные в отчете о поиске Патент 2016 года RU2579610C2

СПОСОБ ФОРМИРОВАНИЯ НУЛЯ ДИАГРАММЫ НАПРАВЛЕННОСТИ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ 1998
  • Мануилов Б.Д.
  • Башлы П.Н.
  • Гладушенко С.Г.
RU2123743C1
ФАЗИРОВАННАЯ АНТЕННАЯ РЕШЕТКА 2009
  • Митин Владимир Александрович
  • Винярская Наталья Александровна
  • Рыбин Максим Сергеевич
  • Синани Анатолий Исакович
  • Грибанов Александр Николаевич
  • Мосейчук Георгий Феодосьевич
RU2398319C1
ФАЗИРОВАННАЯ АНТЕННАЯ РЕШЕТКА 2005
  • Синани Анатолий Исакович
  • Митин Владимир Александрович
  • Позднякова Раиса Дмитриевна
  • Винярская Наталья Александровна
  • Ястребов Борис Петрович
  • Крылов Петр Константинович
  • Мосейчук Георгий Феодосьевич
RU2297699C2
ФАЗИРОВАННАЯ АНТЕННАЯ РЕШЕТКА 1999
  • Мамонов А.И.
  • Воронежцев А.В.
RU2165118C2
СПОСОБ ИСПЫТАНИЯ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ С ПРИНУДИТЕЛЬНЫМ ВПРЫСКОМ ТОПЛИВА И ЭЛЕКТРИЧЕСКИМ УПРАВЛЕНИЕМ ТОПЛИВОПОДАЧЕЙ 2006
  • Вертей Михаил Леванович
  • Воронин Дмитрий Максимович
  • Федюнин Павел Иванович
  • Комлев Виталий Анатольевич
RU2330256C1
ФАЗИРОВАННАЯ АНТЕННАЯ РЕШЕТКА 2001
  • Мамонов А.И.
  • Воронежцев А.В.
  • Синани А.И.
  • Чалых А.Е.
RU2208274C1
WO 2007103589 A2, 13.09.2007
АНТЕННАЯ СИСТЕМА 2002
  • Томас Луис Дэвид
  • Хэскелл Филип Эдвард
  • Хардинг Клайв Ричард
RU2273923C2
WO 2007106159 A2, 20.09.2007
US 2006293013 A1, 28.12.2006
Пневматический сектор 1987
  • Кобаладзе Джимшер Георгиевич
  • Гелашвили Гиви Мурманович
  • Джанелидзе Нино Карловна
  • Панджавидзе Арчил Бенедиктович
SU1526605A1
WO 2004082071 A1, 23.09.2004
ФАЗОВЫЙ СПОСОБ ФОРМИРОВАНИЯ ПРОВАЛА В ДИАГРАММЕ НАПРАВЛЕННОСТИ ПЛОСКОЙ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ 2010
  • Грибанов Александр Николаевич
  • Мосейчук Георгий Феодосьевич
  • Гаврилова Светлана Евгеньевна
  • Павленко Екатерина Анатольевна
  • Чубанова Ольга Александровна
RU2457589C1

RU 2 579 610 C2

Авторы

Гаврилова Светлана Евгеньевна

Грибанов Александр Николаевич

Мосейчук Георгий Феодосьевич

Павленко Екатерина Анатольевна

Чубанова Ольга Александровна

Даты

2016-04-10Публикация

2011-04-06Подача