Область техники
Изобретение относится к электроэнергетике и может найти применение в автономных электроэнергетических комплексах, использующих нестабильные источники энергии.
Уровень техники
Известен электроэнергетический комплекс, содержащий дизельные генераторы и ветроэнергетичекие установки, работающие на сборные шины [RU 75793].
В качестве прототипа выбран электроэнергетический комплекс, содержащий дизельные генераторы и ветроэнергетические установки, работающие на сборные шины, а также регулируемую балластную нагрузку [Автореферат диссертации на соискание ученой степени кандидата технических наук. Хошнау Зана Пешанг Халил. Автономные системы электроснабжения на основе энергоэффективных ветродизельных электростанций. Томск. 2012].
Общий недостаток, присущий вышеуказанным аналогу и прототипу, - низкое качество вырабатываемой электроэнергии, напряжение и частота которой значительно отклоняются от номинальных значений при возникновении дисбаланса между вырабатываемой и забираемой потребителями мощности. В прототипе этот недостаток проявляется в переходных режимах при кратковременных нарушениях баланса, которые не успевают отслеживать соответствующие регуляторы дизельного генератора и балластной нагрузки.
Раскрытие изобретения
В отличие от прототипа в предлагаемом комплексе к сборным шинам дополнительно подключен синхронный компенсатор, снабженный автоматическим регулятором возбуждения, при этом параметры подключенного компенсатора соответствуют условию
где J - момент инерции ротора компенсатора, кг·м2,
N - число пар полюсов компенсатора,
ΔW - максимально допустимый для данного комплекса дисбаланс энергии, Дж,
Δf - допустимое отклонение частоты от fном. , Гц.
Это позволяет поддерживать в заданных пределах отклонения напряжения и частоты переменного тока на сборных шинах комплекса как при плавных (статических), так и при кратковременных (динамических) дисбалансах вырабатываемой и потребляемой энергии.
Изобретение имеет развития.
В соответствии с одним из развитий изобретения на валу компенсатора 6 установлен маховик, с помощью которого обеспечивается требуемый момент инерции ротора компенсатора.
В соответствии с другим развитием изобретения балластная нагрузка может быть выполнена в виде электробойлера, связанного с потребителями тепла.
Осуществление изобретения с учетом его развитий
На фигуре показан пример структуры предлагаемого электроэнергетического комплекса. Комплекс содержит дизельный генератор 1 и ветроэнергетичекие установки 2, соединенные сборными шинами 3, к которым подключены регулируемая балластная нагрузка 4 и синхронный компенсатор 5, снабженный автоматическим регулятором возбуждения 6.
На валу компенсатора 5 установлен маховик 7, с помощью которого обеспечивается требуемая величина вращательного момента инерции J ротора компенсатора 5.
Балластная нагрузка 4 представляет собой электрический бойлер, в который отводятся излишки электроэнергии, используемые, например, на нагрев воды для отопления отдельных помещений или поселка.
Работает комплекс следующим образом.
Ветроэнергетические установки (ВЭУ) 2 работают постоянно, используя дешевую энергию ветра. При избытке этой энергии баланс вырабатываемой и потребляемой электроэнергии, необходимый для поддержания частоты, обеспечивается за счет ступенчатого регулирования балластной нагрузки, а при недостаточности энергии ВЭУ - включается дизельный генератор 1.
Поддержание напряжения и частоты на сборных шинах 3 комплекса должно обеспечиваться в допустимых пределах (при заданных ограничениях на величину дисбаланса мощностей) независимо от скорости ветра и величины потребительской нагрузки.
Для статического поддержания напряжения на сборных шинах 3 в заданных пределах используется регулировка возбуждения дизельного генератора 1 и синхронного компенсатора 5.
Синхронный компенсатор 5 представляет собой ненагруженный синхронный электродвигатель, снабженный широкодиапазонным автоматическим регулятором 6, изменяющим величину тока возбуждения электродвигателя так, что напряжение на сборных шинах, к которым подключены выводы компенсатора 5, остается неизменным. При этом компенсатор 5 функционирует по основному назначению - в качестве источника реактивной энергии, компенсирующего потери от реактивной составляющей тока нагрузки.
Номинальная (установленная) реактивная мощность компенсатора 5, необходимая для выполнения этой функции, как правило, в несколько раз меньше суммы номинальных активных мощностей всех генераторов комплекса.
Баланс активной мощности и, следовательно, поддержание частоты при медленных изменениях скорости ветра и/или потребительской нагрузки (в статических режимах) обеспечивается регулированием подачи топлива в дизельные двигатели генераторов 1 и балластной нагрузки 4. Однако в силу инерционности такого регулирования, оно не обеспечивает удержания частоты в заданных пределах при переходных процессах на коротких интервалах времени (1÷3 с).
Для этой цели, согласно изобретению, используются инерционные свойства синхронного компенсатора 5, параметры которого выбираются согласно условию (1), которое может быть обосновано и пояснено следующим образом.
Энергия W, запасенная вращающимся ротором компенсатора, связана с его угловой скоростью вращения ω и угловым моментом инерции J известным выражением . Учитывая, что допустимые отклонения частоты переменного тока, вырабатываемого комплексом, и вызывающий их допустимый дисбаланс энергии не превышают 1-2%, можно получить приближенное соотношение (1) для параметров ротора компенсатора 5, обеспечивающих за счет инерции его вращения удержание кратковременных колебаний частоты в пределах заданных требований к качеству энергии.
При выполнении условия (1) качество электроэнергии (по отклонению частоты) сохраняется в заданных пределах при допускаемой величине кратковременных дисбалансов активной энергии (связанных с колебаниями скорости ветра и потребляемой нагрузки), возникающих из-за инерционности регулирования мощностей дизельного генератора и балластной нагрузки.
Для выполнения условия (1) компенсатор 5 может быть выбран из номенклатурного ряда выпускаемых синхронных компенсаторов по значениям параметров N и J (информация о J может быть представлена производителем по запросу). При этом номинальная реактивная мощность компенсатора 5, выбранного по условию (1), оказывается численно близкой к суммарной активной мощности всех генераторов комплекса. Другая возможность выполнить условие (1) - установить соответствующий маховик на валу компенсатора 5 меньшей мощности, выбранного для компенсации потерь от реактивной составляющей тока нагрузки.
название | год | авторы | номер документа |
---|---|---|---|
ЭЛЕКТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА СУДНА | 1997 |
|
RU2110435C1 |
Автономная комбинированная система электроснабжения с возобновляемыми источниками электроэнергии и частотно-фазовым регулированием гибкости | 2022 |
|
RU2818206C1 |
АВТОНОМНАЯ ВЕТРОДИЗЕЛЬЭЛЕКТРИЧЕСКАЯ УСТАНОВКА | 2000 |
|
RU2174191C1 |
Ветроэнергетическая установка | 2021 |
|
RU2770526C1 |
Ветроэнергетическая установка | 2016 |
|
RU2615564C1 |
СИНХРОННЫЙ ГЕНЕРАТОР-КОМПЕНСАТОР И СПОСОБ ЕГО РАБОТЫ | 2007 |
|
RU2348097C1 |
Устройство для управления возбуждением синхронного генератора в распределительной сети переменного тока | 2023 |
|
RU2802730C1 |
Система бесперебойного электроснабжения | 1984 |
|
SU1334268A1 |
Агрегат бесперебойного электроснабжения | 1990 |
|
SU1739439A1 |
СПОСОБ УПРАВЛЕНИЯ ГЕНЕРИРУЮЩЕЙ ЭЛЕКТРОЭНЕРГЕТИЧЕСКОЙ УСТАНОВКОЙ | 2005 |
|
RU2295191C1 |
Использование: в области электроэнергетики. Технический результат - обеспечение возможности поддерживать в заданных пределах отклонения напряжения и частоты переменного тока на сборных шинах электроэнергетического комплекса. Электроэнергетический комплекс содержит дизельный генератор (1) и ветроэнергетичекие установки (2), соединенные сборными шинами (3), к которым подключены регулируемая балластная нагрузка (4) и синхронный компенсатор (5), снабженный автоматическим регулятором возбуждения (6). Для удержания частоты в заданных пределах при переходных процессах на коротких интервалах времени (1÷3 с) используются инерционные свойства ротора синхронного компенсатора (5). Момент инерции и число пар полюсов ротора компенсатора (5) выбираются согласно условию, приведенному в описании. Для обеспечения требуемой величины вращательного момента инерции на валу ротора компенсатора (5) может быть установлен маховик (7). Балластная нагрузка (4) может быть выполнена в виде электробойлера, связанного с потребителями тепла. 2 з.п. ф-лы, 1 ил.
1. Электроэнергетический комплекс, содержащий по меньшей мере один дизельный генератор и по меньшей мере одну ветроэнергетическую установку, соединенные сборными шинами, к которым подключены регулируемая балластная нагрузка и синхронный компенсатор, снабженный автоматическим регулятором возбуждения, при этом параметры синхронного компенсатора соответствуют условию
J/N2≥ΔW/4fномπ2Δf,
где J - момент инерции ротора компенсатора, кг·м2,
N - число пар полюсов компенсатора,
ΔW - максимально допустимый для данной электростанции дисбаланс энергии, Дж,
Δf - допустимое отклонение частоты от fном., Гц.
2. Электроэнергетический комплекс по п.1, в котором для получения требуемого момента инерции J на валу ротора компенсатора установлен маховик.
3. Электроэнергетический комплекс по п.1, в котором балластная нагрузка выполнена в виде электробойлера, связанного с потребителями тепла.
Способ использования органических веществ из паров и воды получаемых при обезвоживании торфа | 1935 |
|
SU46530A1 |
АВТОНОМНАЯ СИСТЕМА БЕСПЕРЕБОЙНОГО ЭЛЕКТРОСНАБЖЕНИЯ, ИСПОЛЬЗУЮЩАЯ ВОЗОБНОВЛЯЕМЫЙ ИСТОЧНИК ЭНЕРГИИ | 2004 |
|
RU2262790C1 |
УСТРОЙСТВО БЕСПЕРЕБОЙНОГО ЭЛЕКТРОСНАБЖЕНИЯ ПОТРЕБИТЕЛЕЙ ЭЛЕКТРОЭНЕРГЕТИЧЕСКОЙ СИСТЕМЫ, РАБОТАЮЩЕЙ НА НЕСТАБИЛЬНЫХ ИСТОЧНИКАХ ЭНЕРГИИ | 2006 |
|
RU2304836C1 |
АНТЕННА | 1990 |
|
RU2006998C1 |
Авторы
Даты
2016-04-10—Публикация
2014-12-24—Подача