ИСТОЧНИК ОПОРНОГО НАПРЯЖЕНИЯ Российский патент 2016 года по МПК G05F1/00 

Описание патента на изобретение RU2580458C1

Устройство относится к области электротехники и может быть использовано в качестве температурно-стабильного источника опорного напряжения (ИОН).

Известны температурно-стабильные ИОН, к недостатком которых относится излишняя сложность, вызванная использованием большого количества элементов [US Patent 4380706. Voltage reference circuit / Robert S. Wrathall. - Dec. 24, 1980], и необходимость использования источника опорного тока [Соклоф С. Аналоговые интегральные схемы: Пер. с англ. - М.: Мир, 1988. - С. 240, рис. З3.27], что вызывает определенные трудности при создании прецизионных ИОН.

Наиболее близким техническим решением, принятым за прототип, является ИОН, приведенный на фиг. 1 [Старченко Е.И., Барилов И.В., Кузнецов П.С. Способ компенсации составляющих второго порядка температурной погрешности источников опорного напряжения на основе ширины запрещенной зоны кремния // Известия Южного федерального университета. Технические науки. 2012. №2 (127). С. 99-105.]. Недостатком прототипа является несколько повышенная минимально возможная разность напряжений вход-выход (около 1,2 В). То есть нормальная работа устройства обеспечивается только тогда, когда значение входного (питающего) напряжения оказывается не меньше, чем сумма выходного (опорного) и минимальной разности напряжений вход-выход.

Задача, на решение которой направлено предлагаемое изобретение, заключается в обеспечении заявляемого технического результата - обеспечении минимального температурного коэффициента выходного напряжения ИОН при пониженной разности напряжений вход-выход.

Для достижения заявляемого технического результата в схему прототипа, содержащую шесть транзисторов и три резистора, второй резистор подключен между выходной клеммой и первым выводом первого резистора, база первого транзистора подключена к базе второго транзистора, база и коллектор третьего транзистора объединяются с коллектором первого и базой четвертого транзисторов, коллектор второго транзистора подключен к коллектору четвертого, эмиттер пятого транзистора подключен к общей шине, а коллектор - к базе шестого, введено соединение третьего резистора между шиной питания и базой шестого транзистора, коллектор которого подключен к выходной клемме, а эмиттер - к шине питания, эмиттер первого транзистора подключен к первому выводу первого резистора, ко второму выводу которого подключен эмиттер второго транзистора, эмиттеры третьего и четвертого транзисторов подключены к общей шине, база второго транзистора подключена к коллектору первого транзистора, а база пятого - к коллектору четвертого транзистора.

Схема прототипа приведена на фиг. 1. Схема заявляемого устройства представлена на фиг. 2. На фиг. 3 приведены результаты моделирования.

Заявляемый ИОН (фиг. 2) содержит шесть транзисторов (с первого по шестой), обозначенных, соответственно, цифрами 1-6, и три резистора (с первого по третий), обозначенные, соответственно, цифрами 7-9, резисторы 7 и 8 подключены первыми выводами к эмиттеру транзистора 1, второй вывод резистора 7 подключен к эмиттеру транзистора 2, базы транзисторов 1-4 объединяются с коллекторами транзисторов 1 и 3, коллекторы транзисторов 2 и 4 подключены к базе транзистора 5, первый вывод резистора 9 и база транзистора 6 подключены к коллектору транзистора 5, второй вывод резистора 9 и эмиттер транзистора 6 подключены к шине питания, второй вывод резистора 8 и коллектор транзистора 6 подключены к выходной клемме.

Прежде чем рассмотреть работу заявляемого устройства, отметим, что в схеме прототипа (фиг. 1) транзисторы VT1-VT4 играют роль источника тока, управляемого усилителем сигнала рассогласования, который, в свою очередь, совмещен с источником опоры и делителем напряжения обратной связи и выполнен на элементах VT3, VT6, R1-R3. Разность напряжений вход-выход равна сумме напряжений база-эмиттер транзистора VT5 и коллектор-эмиттер транзистора VT4. Таким образом, минимальная разность напряжений вход-выход, при которой сохраняется работоспособность схемы прототипа, составляет около 1,3 В.

Чтобы достичь минимально возможной разности напряжений вход-выход, в заявляемом устройстве (фиг. 2) в качестве управляемого источника тока используется только один регулирующий транзистор 6 с коллекторным выходом. Транзистор 6 управляется усилителем сигнала рассогласования на транзисторе 5. Транзисторы 1-4 совместно с резисторами 7 и 8 играют роль источника опоры с делителем напряжения обратной связи и датчиком ошибки. При этом транзисторы 3 и 4 представляют собой повторитель тока, а транзисторы 1, 2 и резистор 7 - токовое зеркало Видлара, в котором площадь эмиттера транзистора 2 в N раз больше площади эмиттера транзистора 1, что приводит к возникновению разности напряжений база-эмиттер транзисторов 1 и 2, приложенной к резистору 7

где U7 напряжение на резисторе 7; UБЭ1 и UБЭ2 напряжения база-эмиттер транзисторов 1 и 2 соответственно.

Или, выражая напряжения через соответствующие токи

где R7 сопротивление резистора 7; IЭ1 и IЭ2 эмиттерные токи транзисторов 1 и 2 соответственно; φT=kT/q - температурный потенциал; k - постоянная Больцмана; Т - абсолютная температура; q - заряд электрона; IS - ток насыщения обратносмещенного p-n перехода транзистора, пропорциональный площади эмиттера.

В первом приближении можно считать коэффициенты передачи по току β всех транзисторов достаточно большими, чтобы базовыми токами можно было пренебречь. Тогда токи эмиттеров и коллекторов транзисторов 1-4 в силу действия обратной связи и идентичности параметров транзисторов 1 и 2 можно считать равными I, а выражение (2) сведется к виду

То есть рабочий ток транзисторов 1-4 задается только резистором 7 и отношением площадей N. Причем этот ток с ростом температуры увеличивается (из-за φТ), а напряжение база-эмиттер уменьшается (из-за IS). Отметим, что

где С - постоянный коэффициент, определяемый технологией производства интегрального транзистора и пропорциональный площади p-n перехода; Е - энергетическая ширина запрещенной зоны при абсолютном нуле, полученная линейной экстраполяцией от комнатной температуры к абсолютному нулю, равная для кремния 1,205 В.

Учитывая (3) и считая, что напряжения база-эмиттер транзисторов 1 и 3 также равны, можно найти выходное напряжение ИОН:

где U8 напряжение на резисторе 8; R8 сопротивление резистора 8; UБЭ3 напряжение база-эмиттер транзистора 3.

Из анализа выражений (3) и (5) следует, что температурный дрейф выходного напряжения имеет две противоположные по знаку составляющие, и, подобрав сопротивление R8, можно добиться температурной компенсации ИОН. Дифференцируя (3-5) по температуре, можно получить значение выходного напряжения, при котором температурный дрейф равен нулю

Для более точного анализа следует учесть, что токи баз не равны нулю, особенно для pnp-транзисторов, и так не отличающихся высокими значениями коэффициента усиления тока базы β, а уж тем более при воздействии низких температур, поскольку β зависит от температуры

где β0 - коэффициент усиления тока базы при комнатной (номинальной) температуре Т0; Т - абсолютная температура.

Выражение, более точно отражающее взаимосвязь токов эмиттеров транзисторов 1 и 2, можно записать в следующем виде:

где βi - коэффициент усиления тока базы транзистора, при этом считается, что β12- и β34; I9 - ток через резистор 9.

Решение системы уравнений, включающей в себя выражения (2) и (8), позволяет определить токи, необходимые для определения выходного напряжения (5). Однако выполнение соответствующих аналитических преобразований и получение удобного для анализа выражения представляет определенную трудность, хотя можно получить приближенное решение с использованием численных методов. Отметим, что ток I9 в выражении (8) определяется значением резистора 9 и напряжением база-эмиттер транзистора 6 и также является режимно-зависимым.

Представленные на фиг. 3 результаты моделирования заявляемого устройства отображают зависимость выходного напряжения (нижняя диаграмма) и соответствующий температурный коэффициент напряжения (верхняя диаграмма) от температуры. Поскольку напряжение питания составляет 2,6 В, то разность напряжений вход-выход составляет всего около 0,5 В.

Таким образом, и проведенный анализ, и данные схемотехнического моделирования подтверждают, что для заявляемого устройства достигается заявляемый технический результат - обеспечивается минимальный температурный коэффициент выходного напряжения ИОН при пониженной разности напряжений вход-выход.

Похожие патенты RU2580458C1

название год авторы номер документа
ИСТОЧНИК ОПОРНОГО НАПРЯЖЕНИЯ 2011
  • Барилов Иван Васильевич
  • Старченко Евгений Иванович
  • Кузнецов Павел Сергеевич
RU2461048C1
КОМПЕНСАЦИОННЫЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ 2013
  • Барилов Иван Васильевич
  • Прокопенко Николай Николаевич
  • Старченко Евгений Иванович
RU2523168C1
СТАБИЛИЗАТОР НАПРЯЖЕНИЯ 1999
  • Барилов И.В.
  • Бондаренко Д.А.
  • Старченко Е.И.
RU2151459C1
СТАБИЛИЗАТОР НАПРЯЖЕНИЯ 1999
  • Барилов И.В.
  • Бондаренко Д.А.
  • Старченко Е.И.
RU2152640C1
ИСТОЧНИК ОПОРНОГО НАПРЯЖЕНИЯ НА ОСНОВЕ УДВОЕННОЙ ШИРИНЫ ЗАПРЕЩЕННОЙ ЗОНЫ КРЕМНИЯ 2014
  • Старченко Евгений Иванович
  • Барилов Иван Васильевич
  • Клименко Максим Владимирович
  • Чернышов Дмитрий Юрьевич
RU2547227C1
ИСТОЧНИК ОПОРНОГО НАПРЯЖЕНИЯ НА ОСНОВЕ УТРОЕННОЙ ШИРИНЫ ЗАПРЕЩЕННОЙ ЗОНЫ КРЕМНИЯ 2014
  • Старченко Евгений Иванович
  • Барилов Иван Васильевич
  • Клименко Максим Владимирович
  • Чернышов Дмитрий Юрьевич
RU2546079C1
ИСТОЧНИК ОПОРНОГО НАПРЯЖЕНИЯ 2012
  • Старченко Евгений Иванович
  • Кузнецов Павел Сергеевич
RU2480899C1
ИСТОЧНИК ОПОРНОГО НАПРЯЖЕНИЯ 2012
  • Старченко Евгений Иванович
  • Барилов Иван Васильевич
  • Кузнецов Павел Сергеевич
  • Сукманов Александр Владимирович
RU2473951C1
ИСТОЧНИК ОПОРНОГО НАПРЯЖЕНИЯ 2012
  • Старченко Евгений Иванович
  • Кузнецов Павел Сергеевич
RU2475807C1
ИСТОЧНИК ОПОРНОГО НАПРЯЖЕНИЯ 2013
  • Старченко Евгений Иванович
  • Барилов Иван Васильевич
  • Кузнецов Павл Сергеевич
RU2523121C1

Иллюстрации к изобретению RU 2 580 458 C1

Реферат патента 2016 года ИСТОЧНИК ОПОРНОГО НАПРЯЖЕНИЯ

Изобретение относится к области электротехники и может быть использовано в качестве температурно-стабильного источника опорного напряжения (ИОН). Технический результат заключается в обеспечении минимального температурного коэффициента выходного напряжения ИОН при пониженной разности напряжений вход-выход. Для этого предложен источник опорного напряжения, который содержит шесть транзисторов и три резистора, при этом первый и второй резисторы подключены первыми выводами к эмиттеру первого транзистора, второй вывод первого резистора подключен к эмиттеру второго транзистора, базы с первого по четвертый транзисторов объединяются с коллекторами первого и третьего транзисторов, коллекторы второго и четвертого транзисторов подключены к базе пятого транзистора, первый вывод третьего резистора и база шестого транзистора подключены к коллектору пятого транзистора, второй вывод третьего резистора и эмиттер шестого транзистора подключены к шине питания, второй вывод второго резистора и коллектор шестого транзистора подключены к выходной клемме. 3 ил.

Формула изобретения RU 2 580 458 C1

Источник опорного напряжения, содержащий шесть транзисторов и три резистора, при этом второй резистор подключен между выходной клеммой и первым выводом первого резистора, база первого транзистора подключена к базе второго транзистора, база и коллектор третьего транзистора объединяются с коллектором первого и базой четвертого транзисторов, коллектор второго транзистора подключен к коллектору четвертого, эмиттер пятого транзистора подключен к общей шине, а коллектор - к базе шестого, отличающийся тем, что третий резистор подключен между шиной питания и базой шестого транзистора, коллектор которого подключен к выходной клемме, а эмиттер - к шине питания, эмиттер первого транзистора подключен к первому выводу первого резистора, ко второму выводу которого подключен эмиттер второго транзистора, эмиттеры третьего и четвертого транзисторов подключены к общей шине, база второго транзистора подключена к коллектору первого транзистора, а база пятого - к коллектору четвертого.

Документы, цитированные в отчете о поиске Патент 2016 года RU2580458C1

СТАРЧЕНКО Е.И
и др., Способ компенсации составляющих второго порядка температурной погрешности источников опорного напряжения на основе ширины запрещенной зоны кремния, Известия Южного федерального университета, N 2, том 127, 2012, стр
Прибор, замыкающий сигнальную цепь при повышении температуры 1918
  • Давыдов Р.И.
SU99A1
ИСТОЧНИК ОПОРНОГО НАПРЯЖЕНИЯ 2007
  • Старченко Евгений Иванович
  • Гавлицкий Александр Иванович
  • Старченко Иван Евгеньевич
RU2332702C1
Источник опорного напряжения 1990
  • Джио-Джин-Хан
SU1838814A3
US 5258702 A1, 02.11.1993.

RU 2 580 458 C1

Авторы

Старченко Евгений Иванович

Барилов Иван Васильевич

Даты

2016-04-10Публикация

2015-02-25Подача