ФОТОПЕРЕКЛЮЧАЕМЫЙ И ЭЛЕКТРОПЕРЕКЛЮЧАЕМЫЙ ОРГАНИЧЕСКИЙ ПОЛЕВОЙ ТРАНЗИСТОР, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ЕГО ПРИМЕНЕНИЕ В КАЧЕСТВЕ УСТРОЙСТВА ПАМЯТИ Российский патент 2016 года по МПК H01L51/05 H01L51/40 B82B1/00 B82B3/00 

Описание патента на изобретение RU2580905C2

Изобретение относится к области органической электроники, а именно к новому типу устройств памяти на основе органических полевых транзисторов, изготовленных с использованием фотохромных соединений в составе активного слоя, расположенного на границе между слоем полупроводникового материала и диэлектрика. Такая структура устройства позволяет создавать мультибитные элементы памяти, используя оптическое/электрическое программирование транзисторов.

В настоящее время активно развивается область исследований, связанная с разработкой элементов памяти на основе органических полевых транзисторов, способных к переключению между двумя различными состояниями, отличающимися величиной порогового напряжения. Известно несколько подходов, позволяющих реализовать два или более стабильных состояний в полевом транзисторе. Они основаны на использовании устройств, имеющих сложную архитектуру, например транзисторы с плавающим затвором, транзисторы на основе фоточувствительных и сегнетоэлектрических материалов и ряд других.

Известны двухбитные устройства памяти на основе транзисторов с плавающим затвором (Т. Sekitani, Т. Yokota, U. Zschieschang, Н. Klauk, S. Bauer, К. Takeuchi, M. Takamiya, Т. Sakurai, Т. Someya. Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays. Science 2009, 326: 1516-1519), содержащие в своей структуре: 1) пластиковую подложку; 2) нанесенный на нее туннельный слой (затвор) из алюминия толщиной 20 нм; 3) слой диэлектрического материала из оксида алюминия толщиной 4 нм, покрытого сверху (4) слоем органического диэлектрика (алкилфосфоновой кислоты) толщиной 2 нм; 5) плавающий затвор из алюминия толщиной 20 нм (запоминающий слой); 6) слой диэлектрического материала (оксида алюминия с толщиной 4 нм); 7) слой алкилфосфоновой кислоты (2 нм); 8) слой органического полупроводника - пентацена (50 нм); и 9) проводящие электроды (сток и исток) из золота толщиной 50 нм. Работа такого устройства основана на тунеллировании электронов через слой диэлектрика в плавающий затвор, отделенный от полупроводникового рабочего слоя тонким диэлектриком (т.е. фактически в диэлектрике реализуется предпробойный режим, что накладывает ограничения на число циклов переключения и скорость записи информации). Заряд, накопленный в плавающем затворе, создает электрическое поле, которое влияет на прохождение носителей заряда через полупроводник в канале транзистора.

Недостатками такого устройства памяти являются: 1) технологическая сложность изготовления; 2) небольшое количество циклов перезаписи (это связанно с разрушением диэлектрического слоя); 3) время хранения информации ограничено тепловым тунеллированием электронов из плавающего затвора; 4) сильное влияние статического электричества на работу данного элемента памяти.

Известны фотопереключаемые органические полевые транзисторы на основе фоточувствительных органических полупроводников [В.Y. Guo, C. Di, S. Ye, X. Sun, J. Zheng, Y. Wen, W. Wu, G. Yu, and Y. Liu. Multibit Storage of Organic Thin-Film Field-Effect Transistors. Adv Mater 2009, 21: 1954-1959]. В таких устройствах можно реализовать несколько различных электрических состояний в зависимости от величины напряжения UGS, приложенного при облучении транзистора светом. Недостатками таких устройств являются: 1) малое время хранения информации около (250 ч); 2) нет данных о воспроизводимости фоточувствительных эффектов и устойчивости дискретных состояний.

Известны устройства памяти на основе полевых транзисторов с сегнетоэлектрическими [R. Schroeder, L.A. Majewski, М. Grell, Adv. Mater. 2004, 16, 633] и электретными компонентами [H. Yu, Y. Chen, C. Huang, and Y. Su. Investigation of Nonvolatile Memory Effect of Organic Thin-Film Transistors with Triple Dielectric Layers. Appl. Phys. Express. 2012, 5, 034101]. Недостатками данных устройств являются: 1) нестабильность и низкая воспроизводимость электрических свойств, 2) сильное влияние статического электричества на работу данного элемента памяти; 3) большие напряжения записи для генерации поля переключения; 4) низкая надежность, обусловленная миграцией носителей зарядов.

Наиболее близкими к заявленному изобретению являются транзисторы с фотохромными материалами в структуре органического полевого транзистора (J. Phys. Chem. С 2009, 113, 10807-10812), содержащие: 1) пластину из легированного кремния, выполняющую роль затвора, покрытую (2) слоем оксида кремния, на которую последовательно нанесены (3) слой пролупроводникового материала - пентацена, (4) проводящие электроды (сток и исток) из золота и (5) слой фотохромного материала (спиропиран). Эффект фоточувствительности такого устройства основан на изомеризации фотохромных молекул на границе с полупроводниковым материалом при облучении светом. Возникающий при этом дипольный момент создает электрическое поле, которое влияет на инжекцию носителей заряда с электродов в слой полупроводника. При этом может возникать множество дискретных электронных состояний транзистора. Недостатками такого устройства являются: 1) пренебрежимо малые различия в токах IDS между дискретными состояниями (менее 10% от номинальной величины IDS); 2) низкая воспроизводимость фоточувствительных эффектов; 3) небольшое количество циклов перезаписи, связанное с ухудшением свойств границ раздела полупроводник/электроды/фотохромный слой.

Задачей заявляемого изобретения является создание нового типа устройств памяти. Задача решается разработкой фотопереключаемых и электропереключаемых органических полевых транзисторов, принципиально отличающихся тем, что они содержат в своей структуре слой фотохромных молекул, расположенный на границе между слоем полупроводникового материала и диэлектрика.

Схема конструкции защищаемого фотопереключаемого и электропереключаемого органического полевого транзистора представлена на Фиг. 1, где слои 1а и 1б обозначают:

- исток и сток соответственно - электроды на основе электропроводящего материала, представляющего собой металл, выбранный из группы: золото, серебро, алюминий, медь, олово, платина, хром, цинк, титан, никель, палладий, редкоземельные металлы, щелочноземельные металлы и др., или сплавы вышеперечисленных металлов, или проводящий полимер, выбранный из группы допированных политиофенов (например, PEDOT - полиэтилендиокситиофен), полианилинов и полипирролов, или допированные оксиды металлов, выбранные из группы: оксиды индия-олова (ITO), допированный фтором оксид олова (FTO), легированный оксид цинка, или комбинации из нескольких различных электропроводящих материалов;

где слой 2 обозначает:

- слой полупроводникового материала n-типа, р-типа или амбиполярного полупроводника, при этом в качестве полупроводникового материала n-типа могут быть использованы производные фуллеренов (С60, С70, С>70 и их смеси), нафталиндиимиды, перилендиимиды и комбинации вышеперечисленных материалов, в качестве органического полупроводникового материала p-типа может быть использован пентацен, замещенный квинкветиофен или динафтотиенотиофен (молекулярные формулы полупроводниковых материалов: фуллерена C60, производного фуллерена [60] PCBM, фуллерена C70, нафталиндиимида (NDI, R - углеводородный радикал), перилендиимида (PDI, R - углеводородный радикал), пентацена (Pc), квинкветиофена (QT) и динафтотиенотиофена (DNT) приведены на Фиг. 2), а в качестве амбиполярного органического полупроводникового материала может быть использован индиго, его функциональные производные, производные дикетопирролопирролов, изоиндиго и другие группы соединений;

где слой 3 обозначает:

- фоточувствительный слой, состоящий из органических материалов с фотохромными свойствами, принадлежащих к классу спирооксазинов SPOxAz, общей формулы представленной на Фиг. 3, где радикалы R1-R4, представляют независимым образом атомы водорода, алкильные заместители C1-C10, фенильные группы, нитрогруппы или алкилкарбонильные группы C1-C10. Кроме того, радикалы R1-R4 попарно, т.е. R1 и R2, либо R2 и R3, либо R3 и R4, могут представлять бензольные кольца, аннелированные (т.е. конденсированные, имеющие общую C-C связь) с бензольным кольцом, несущим указанные заместители R1-R4 в формуле SPOxAz, при этом наиболее предпочтительны спирооксазины, проиллюстрированые структурами 1-4 на Фиг. 4,

где слой 4 обозначает:

- слой диэлектрического материала, представляющий собой оксид алюминия, гафния или другого металла, обладающий диэлектрическими свойствами, при этом оксид металла может быть немодифицированным или покрытым пассивирующим слоем (например, алкилфосфоновыми кислотами);

где слой 5 обозначает:

- затвор, представляющий собой электрод на основе металлического алюминия или другого материала, обладающего электропроводностью, характерной для металлов;

где слои 0 и 6 обозначают:

- подложку, изолирующее покрытие или другой слой, не оказывающий непосредственного влияния на электрические характеристики транзистора, но обеспечивающий необходимые механические и эксплуатационные свойства транзистора. Подложка может быть гибкой (на основе полимерных материалов, например полиэтилентерефталата, полиимидов, полиэтиленнафталатов и др.), полужесткой или жесткой (например, стекло).

Технические результаты, достигаемые при реализации заявленного изобретения, заключаются в:

- упрощении структуры и технологии изготовления фотопереключаемого и электропереключаемого полевого транзистора;

- возможности создания множественных дискретных состояний, отличающихся пороговыми напряжениями;

- достижении существенных различий в токах IDS для разных состояний (до 10000 раз);

- в обеспечении спектральной чувствительности устройства: воздействие импульсами света различной длины волны переводит транзистор в разные состояния;

- в возможности использования фотопереключаемого и электропереключаемого полевого транзистора в качестве мультибитной ячейки памяти;

- в возможности оптического и электрического программирования указанной ячейки памяти;

- в увеличении плотности записи информации за счет реализации мультибитного режима.

Указанные технические результаты достигаются за счет введения дополнительного слоя фотохромного материала (соединения класса спирооксазинов) между слоями полупроводникового материала и диэлектрика. Роль фотохромного слоя заключается в изменении электрических характеристик (зарядового состояния, емкости, диэлектрической проницаемости, зарядово-транспортных свойств) границы раздела между органическим полупроводником и диэлектриком при оптическом и электрическом программировании.

Переключение транзистора между состояниями транзистора (например, при записи или стирании информации) может осуществляться как оптическим методом (импульс света), так и оптоэлектрическим: воздействие импульса света и электрического поля, возникающего за счет приложенного напряжения.

Заявляемое изобретение иллюстрируется, но никак не ограничивается следующими примерами.

Пример 1

Изготавливаемый фотопереключаемый транзистор имел структуру, представленную в описании (см. выше) и в формуле изобретения (см. ниже). В качестве фотохромного соединения применялось производное спирооксазина 1,3-Дигидро-1,3,3-триметилспиро[2Н-индол-2,3′-[3H]фенантрен[9,10-b](1,4)оксазин], а качестве полупроводникового материала - фуллерен C60. Молекулярные формулы и схема фотоизомеризации производного спирооксазина (2), используемого в составе фотопереключаемого и электропереключаемого транзистора представлена на Фиг. 5, где символом «X» обозначена длина волны светового импульса, а «E» - потенциал VGS, приложенный между затвором и истоком, создающий электрическое поле в слое фотохромного материала. Подложками служили стеклянные пластины 1.5×1.5 см. Нанесение слоев 1а, 1б, 2 и 5 проводилось методом термического испарения в вакуумной камере (при давлении 10-6 мБар), встроенной внутри аргонового бокса. Толщины Al затвора и Ag электродов составляли 200 нм, а полупроводникового слоя - 100 нм. Нанесение фотохромного слоя осуществлялось в аргоновом боксе с помощью спинкоутера при скорости вращения подложки 1000 об/мин. В качестве источников света использовались лазеры с длиной волны 405 и 532 нм. Для записи проходных характеристик применялся измеритель Kethley 2612А. На Фиг. 6 представлены проходные характеристики транзистора в разных режимах оптическо-электрического программирования (показано три различных состояния). На Фиг. 7 представлена зависимость тока IDS от времени при переключении транзистора между разными состояниями (иллюстрация алгоритма записи - стирания данных).

Пример 2

Изготавливаемый фотопереключаемый транзистор имел структуру, представленную в описании (см. выше) и в формуле изобретения (см. ниже). В качестве фотохромного соединения применялось производное спирооксазина 1,3-Дигидро-1,3,3-триметилспиро[2H-индол-2,3′-[3H]фенантрен[9,10-b](1,4)оксазин], а качестве полупроводникового материала - N,N′-ди(н-амил)перилендиимид. (Фиг. 2). Подложками служили стеклянные пластины 1.5×1.5 см. Нанесение слоев 1а, 1б, 2 и 5 проводилось методом термического испарения в вакуумной камере (при давлении 10-6 мБар), встроенной внутри аргонового бокса. Толщины Al затвора и Ag электродов составляли 200 нм, а полупроводникового слоя - 100 нм. Нанесение фотохромного слоя осуществлялось в аргоновом боксе с помощью спинкоутера при скорости вращения подложки 1000 об/мин. В качестве источников света использовались лазеры с длиной волны 405 и 532 нм. Для записи проходных характеристик применялся измеритель Kethley 2612А. На Фиг. 8 представлены проходные характеристики фотопереключаемого и электропереключаемого органического полевого транзистора с N,N′-ди(н-амил)перилендиимидом в качестве полупроводникового материала в разных режимах оптическо-электрического программирования (показано пять различных состояний).

Пример 3

Изготавливаемый фотопереключаемый транзистор имел структуру, представленную в описании (см. выше) и в формуле изобретения (см. ниже). В качестве фотохромного соединения применялось производное спирооксазина 1,3-Дигидро-1,3,3-триметилспиро[2H-индол-2,3′-[3H]фенантрен[9,10-b](1,4)оксазин], а качестве полупроводникового материала использовалось производное нафталиндиимида (2,7-бис(н-гептил)бензо[lmn][3,8]фенантролин-1,3,6,8(2H,7H)-тетраон). Подложками служили стеклянные пластины 1.5×1.5 см. Нанесение слоев 1а, 1б, 2 и 5 проводилось методом термического испарения в вакуумной камере (при давлении 10-6 мБар), встроенной внутри аргонового бокса. Толщины Al затвора и Ag электродов составляли 200 нм, а полупроводникового слоя - 100 нм. Нанесение фотохромного слоя осуществлялось в аргоновом боксе с помощью спинкоутера при скорости вращения подложки 1000 об/мин. В качестве источников света использовались лазеры с длиной волны 405 и 532 нм. Для записи проходных характеристик применялся измеритель Kethley 2612А. На Фиг. 9 представлены проходные характеристики фотопереключаемого и электропереключаемого органического полевого транзистора с 2,7-бис(н-гептил)бензо[lmn][3,8]фенантролин-1,3,6,8(2Н,7Н)-тетроном в качестве полупроводникового материала (показано три различных состояния).

Пример 4

Изготавливаемый фотопереключаемый транзистор имел структуру, представленную в описании (см. выше) и в формуле изобретения (см. ниже). В качестве фотохромного соединения применялось производное спирооксазина 1,3-Дигидро-1,3,3-триметилспиро[2Н-индол-2,3′-[3H]фенантрен[9,10-b](1,4)оксазин], а качестве полупроводникового материала - пентацен (Фиг. 2). Подложками служили стеклянные пластины 1.5×1.5 см. Нанесение слоев 1а, 1б, 2 и 5 проводилось методом термического испарения в вакуумной камере (при давлении 10-6 мБар), встроенной внутри аргонового бокса. Толщины Al затвора и Ag электродов составляли 200 нм, а полупроводникового слоя - 100 нм. Нанесение фотохромного слоя осуществлялось в аргоновом боксе с помощью спинкоутера при скорости вращения подложки 1000 об/мин. В качестве источников света использовались лазеры с длиной волны 405 и 532 нм. Для записи проходных характеристик применялся измеритель Kethley 2612А. На Фиг. 10 представлены проходные характеристики фотопереключаемого и электропереключаемого органического полевого транзистора с пентаценом в качестве полупроводникового материала (показано два различных состояния).

Похожие патенты RU2580905C2

название год авторы номер документа
ПОЛУПРОВОДНИКОВЫЕ ТОНКИЕ ПЛЕНКИ [60] ФУЛЛЕРЕНА И ИХ ПРИМЕНЕНИЕ 2012
  • Мумятов Александр Валерьевич
  • Сусарова Диана Каримовна
  • Трошин Павел Анатольевич
  • Разумов Владимир Федорович
RU2583375C2
ОРГАНИЧЕСКОЕ ФОТОВОЛЬТАИЧЕСКОЕ УСТРОЙСТВО, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЕ ФТОРСОДЕРЖАЩИХ МОДИФИКАТОРОВ ДЛЯ УЛУЧШЕНИЯ ХАРАКТЕРИСТИК ОРГАНИЧЕСКИХ СОЛНЕЧНЫХ БАТАРЕЙ 2012
  • Трошин Павел Анатольевич
  • Сусарова Диана Каримовна
  • Разумов Владимир Федорович
RU2528416C2
АКТИВНОЕ ПОЛЕВОЕ ПОЛУПРОВОДНИКОВОЕ ЭЛЕКТРОННОЕ ИЛИ ОПТОЭЛЕКТРОННОЕ УСТРОЙСТВО С ЭНЕРГОНЕЗАВИСИМОЙ ПАМЯТЬЮ И СПОСОБ ИЗГОТОВЛЕНИЯ ТАКОГО УСТРОЙСТВА 2009
  • Ферран Ди Пайва Мартинш Родригу
  • Коррея Фортунату Элвира Мария
  • Нуниш Перейра Луиш Мигел
  • Кандиду Баркинья Педру Мигел
  • Ди Оливейра Коррея Нуну Филипи
RU2498461C2
СПОСОБ УПРАВЛЕНИЯ РАБОТОЙ МЕМРИСТИВНОЙ КОНДЕНСАТОРНОЙ СТРУКТУРЫ МЕТАЛЛ-ДИЭЛЕКТРИК-ПОЛУПРОВОДНИК 2018
  • Тихов Станислав Викторович
  • Антонов Иван Николаевич
  • Белов Алексей Иванович
  • Горшков Олег Николаевич
  • Михайлов Алексей Николаевич
  • Шенина Мария Евгеньевна
  • Шарапов Александр Николаевич
RU2706197C1
СПОСОБ ИСПОЛЬЗОВАНИЯ ЦЕЛЛЮЛОЗНОГО НАТУРАЛЬНОГО, СИНТЕТИЧЕСКОГО ИЛИ СМЕШАННОГО МАТЕРИАЛА В КАЧЕСТВЕ ОДНОВРЕМЕННО НЕСУЩЕГО И ДИЭЛЕКТРИЧЕСКОГО ОСНОВАНИЯ В САМОСТОЯТЕЛЬНЫХ ЭЛЕКТРОННЫХ И ОПТОЭЛЕКТРОННЫХ УСТРОЙСТВАХ С ПОЛЕВЫМ ЭФФЕКТОМ 2009
  • Ферран Ди Пайва Мартинш Родригу
  • Коррея Фортунату Элвира Мария
RU2495516C2
СПОСОБ ПОЛУЧЕНИЯ ЦИКЛОПРОПАНОВЫХ ПРОИЗВОДНЫХ ФУЛЛЕРЕНОВ, ПРИМЕНЕНИЕ ОРГАНИЧЕСКИХ ПРОИЗВОДНЫХ ФУЛЛЕРЕНОВ В КАЧЕСТВЕ МАТЕРИАЛОВ ДЛЯ ЭЛЕКТРОННЫХ ПОЛУПРОВОДНИКОВЫХ УСТРОЙСТВ, ОРГАНИЧЕСКОГО ПОЛЕВОГО ТРАНЗИСТОРА, ОРГАНИЧЕСКОЙ ФОТОВОЛЬТАИЧЕСКОЙ ЯЧЕЙКИ, ОРГАНИЧЕСКИЙ ПОЛЕВОЙ ТРАНЗИСТОР И ОРГАНИЧЕСКАЯ ФОТОВОЛЬТАИЧЕСКАЯ ЯЧЕЙКА 2011
  • Трошин Павел Анатольевич
  • Горячев Андрей Евгеньевич
  • Мумятов Александр Валерьевич
  • Разумов Владимир Федорович
RU2519782C2
СПОСОБ ОБРАБОТКИ ЭЛЕКТРОДА ДЛЯ ОРГАНИЧЕСКОГО ЭЛЕКТРОННОГО УСТРОЙСТВА 2011
  • Павел Мискевич
  • Ли Вэй Тань
  • Томас Баклунд
  • Пол Крейг Брукс
  • Дейвид Спарроу
  • Тоуби Калл
  • Джайлс Ллойд
RU2588605C2
ФОРМИРОВАНИЕ РИСУНКА 2010
  • Зиррингхаус Хеннинг
  • Чан Цзуй-Фэнь
  • Гвиннер Михаэль
RU2518084C2
ПОЛЕВОЙ ТРАНЗИСТОР, ИСПОЛЬЗУЮЩИЙ ОКСИДНУЮ ПЛЕНКУ ДЛЯ ПЕРЕДАЧИ ИНФОРМАЦИИ, И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2007
  • Ивасаки Тацуя
  • Кумоми Хидея
RU2400865C2
СПОСОБ ФОРМИРОВАНИЯ РЕЛЬЕФА ИЗ ЭЛЕКТРОННОГО ИЛИ ФОТОННОГО МАТЕРИАЛА 2009
  • Зиррингхаус Хеннинг
  • Чан Цзуй-Фэнь
RU2495515C2

Иллюстрации к изобретению RU 2 580 905 C2

Реферат патента 2016 года ФОТОПЕРЕКЛЮЧАЕМЫЙ И ЭЛЕКТРОПЕРЕКЛЮЧАЕМЫЙ ОРГАНИЧЕСКИЙ ПОЛЕВОЙ ТРАНЗИСТОР, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ЕГО ПРИМЕНЕНИЕ В КАЧЕСТВЕ УСТРОЙСТВА ПАМЯТИ

Изобретение относится к области органической электроники, а именно к устройствам памяти на основе органических полевых транзисторов, изготовленных с использованием фотохромных соединений в составе активного слоя, расположенного на границе между слоем полупроводникового материала и диэлектрика. Изобретение обеспечивает формирование и применение фотопереключаемых и электропереключаемых органических полевых транзисторов, содержащих в своей структуре слой фотохромных молекул, расположенный на границе между слоем полупроводникового материала и диэлектрика. Технические результаты, достигаемые при реализации заявленного изобретения, заключаются в упрощении структуры и технологии изготовления фотопереключаемого и электропереключаемого полевого транзистора; возможности создания множественных дискретных состояний, отличающихся пороговыми напряжениями; достижении существенных различий в токах IDS для разных состояний (до 10000 раз); в обеспечении спектральной чувствительности устройства: воздействие импульсами света различной длины волны переводит транзистор в разные состояния; в возможности использования фотопереключаемого и электропереключаемого полевого транзистора в качестве мультибитной ячейки памяти; в возможности оптического и электрического программирования указанной ячейки памяти; в увеличении плотности записи информации за счет реализации мультибитного режима. 4 н.п. ф-лы, 10 ил.

Формула изобретения RU 2 580 905 C2

1. Фотопереключаемый и электропереключаемый органический полевой транзистор, состоящий из шести функциональных слоев,
где слои 1а и 1б обозначают:
- исток и сток соответственно - электроды на основе электропроводящего материала, представляющего собой металл, выбранный из группы: золото, серебро, алюминий, медь, олово, платина, хром, цинк, титан, никель, палладий, редкоземельные металлы, щелочно-земельные металлы и др., или сплавы вышеперечисленных металлов, или проводящий полимер, выбранный из группы дотированных политиофенов (например, PEDOT-полиэтилендиокситиофен), полианилинов и полипирролов, или допированные оксиды металлов, выбранные из группы: оксиды индия-олова (ITO), допированный фтором оксид олова (FTO), легированный оксид цинка, или комбинации из нескольких различных электропроводящих материалов;
где слой 2 обозначает:
- слой полупроводникового материала n-типа, р-типа или амбиполярного полупроводника, при этом в качестве полупроводникового материала n-типа могут быть использованы производные фуллеренов (С60, С70, С>70 и их смеси), нафталиндиимиды, перилендиимиды и комбинации вышеперечисленных материалов, в качестве органического полупроводникового материала р-типа может быть использован пентацен, замещенный квинкветиофен или динафтотиенотиофен, а в качестве амбиполярного органического полупроводникового материала может быть использован индиго, его функциональные производные, производные дикетопирролопирролов, изоиндиго и другие группы соединений;
где слой 3 обозначает:
- фоточувствительный слой, состоящий из органических материалов с фотохромными свойствами, принадлежащих к классу спирооксазинов SPOxAz, общей формулы, где радикалы R1-R4, представляют независимым образом атомы водорода, алкильные заместители С110, фенильные группы, нитрогруппы или алкилкарбонильные группы С110, кроме того, радикалы R1-R4 попарно, т.е. R1 и R2, либо R2 и R3, либо R3 и R4, могут представлять бензольные кольца, аннелированные (т.е. конденсированные, имеющие общую С-С связь) с бензольным кольцом, несущим указанные заместители R1-R4 в формуле SPOxAz, при этом наиболее предпочтительны спирооксазины,
где слой 4 обозначает:
- слой диэлектрического материала, представляющий собой оксид алюминия, гафния или другого металла, обладающий диэлектрическими свойствами, при этом оксид металла может быть немодифицированным или покрытым пассивирующим слоем (например, алкилфосфоновыми кислотами);
где слой 5 обозначает:
- затвор, представляющий собой электрод на основе металлического алюминия или другого материала, обладающего электропроводностью, характерной для металлов;
где слои 0 и 6 обозначают:
- подложку, изолирующее покрытие или другой слой, не оказывающий непосредственного влияния на электрические характеристики транзистора, но обеспечивающий необходимые механические и эксплуатационные свойства транзистора.

2. Способ изготовления фотопереключаемого и электропереключаемого органического полевого транзистора по п. 1, отличающийся тем, что слой фотохромного материала при изготовлении транзистора наносят между слоями диэлектрика и полупроводника.

3. Применение фотопереключаемого и электропереключаемого органического полевого транзистора по п. 1 в качестве устройства памяти.

4. Применение фотопереключаемого и электропереключаемого органического полевого транзистора по п. 1 в качестве мультибитного устройства памяти.

Документы, цитированные в отчете о поиске Патент 2016 года RU2580905C2

CN102723439A, 10.10.2012
JP2010062222A, 18.03.2010
WO2007005871A2, 11.01.2010
RU2007134442A, 27.03.2009.

RU 2 580 905 C2

Авторы

Фролова Любовь Анатольевна

Санина Наталия Алексеевна

Трошин Павел Анатольевич

Алдошин Сергей Михайлович

Даты

2016-04-10Публикация

2014-03-25Подача