СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ПРОЦЕССОМ СУШКИ ВЫСОКОВЛАЖНЫХ ДИСПЕРСНЫХ МАТЕРИАЛОВ Российский патент 2016 года по МПК F26B25/22 

Описание патента на изобретение RU2581012C1

Изобретение относится к автоматизации технологических процессов и может быть использовано при автоматизации процесса сушки высоковлажных дисперсных материалов, таких как свекловичный жом, яблочные и виноградные выжимки и т.п.

Наиболее близким по технической сущности и достигаемому эффекту является способ сушки высоковлажных дисперсных материалов и установка для его осуществления [Патент РФ №2487652. Способ сушки высоковлажных дисперсных материалов и установка для его осуществления, A23L 3/50. (Россия) - №2012106079/13; заявлено 20.02.2012; опубликовано 20.07.2013], предусматривающий сушку исходного материала в импульсном виброкипящем слое перегретым паром при разряжении, разделение потока перегретого пара на два, один из которых направляют в вибросушилку, второй используют для создания разряжения при конденсации в противотоке с холодной водой, которую охлаждают парами хладагента в результате его эжекции рабочим паром, а полученную после эжектирования смесь рабочего пара и паров хладагента направляют на перегрев пара, образовавшийся при этом конденсат возвращают для подготовки рабочего пара и хладагента с образованием контура рециркуляции.

Недостатками известного способа являются:

- не обеспечивается оперативное управление технологическими параметрами процесса сушки высоковлажных дисперсных материалов по информации, получаемой непосредственно с объекта управления в условиях случайных возмущений как со стороны изменения исходных свойств сырья, так и со стороны возможных технологических сбоев оборудования, что в свою очередь не позволяет получить готовый продукт высокого качества;

- не достигаются рациональные режимы работы оборудования в зависимости от подаваемых на него нагрузок;

- не обеспечивается точность и надежность управления за счет накладываемых двусторонних ограничений на управляемые параметры и, как следствие, не создаются условия для увеличения выхода готового продукта и экономии теплоэнергетических затрат.

Технической задачей изобретения является повышение качества и выхода готового продукта, снижение удельных теплоэнергетических затрат.

Для решения технической задачи изобретения предложен способ автоматического управления процессом сушки высоковлажных дисперсных материалов, характеризующийся тем, что он предусматривает сушку исходного материала в виброкипящем слое перегретым паром под разряжением с разделением отработанного перегретого пара на два потока, один из которых перегревают в конденсаторе-пароперегревателе посредством рекуперативного теплообмена с греющим паром и затем возвращают на сушку с образованием замкнутого цикла, а второй поток в количестве испарившейся из материала влаги конденсируют в конденсаторе с барометрической трубой за счет теплообмена без границы раздела поверхности фаз в противотоке с холодной водой, в результате чего в процессе сушки создают необходимое разряжение, причем часть образовавшегося конденсата из барометрической трубы охлаждают и возвращают в конденсатор в количестве, необходимом для создания разряжения; используют пароэжекторную холодильную машину, состоящую из испарителя, теплообменника-рекуператора, эжектора, конденсатора-пароперегревателя, терморегулирующего вентиля и парогенератора, работающих по замкнутому термодинамическому циклу, при этом охлаждение конденсата из барометрической трубы осуществляют в результате рекуперативного теплообмена с парами хладагента, в качестве которого используют воду, причем пары хладагента эжектируются из испарителя в эжектор рабочим паром, а полученную после эжектирования смесь рабочего пара и паров хладагента в качестве греющего пара направляют в конденсатор-пароперегреватель на перегрев пара, направляемого на сушку, образовавшийся при этом конденсат греющего пара возвращают на пополнение уровня воды в парогенераторе и испарителе; дополнительно измеряют расход и влажность материала до и после сушки, амплитуду и частоту колебаний виброкипящего слоя, разряжение перегретого пара в процессе сушки, расход и температуру перегретого пара на входе в виброкипящий слой материала, расход отработанного перегретого пара, направляемого в конденсатор, расход и температуру холодной воды, расходы рабочего пара и паров хладагента, уровней конденсата в барометрической трубе и воды в парогенераторе, давления паров в парогенераторе; по текущим значениям расхода и влажности исходного материала устанавливают амплитуду и частоту колебаний виброкипящего слоя, расход и температуру перегретого пара на процесс сушки с коррекцией по влажности сухого материала воздействием на расход исходного материала; по текущим значениям расхода и влажности исходного и сухого материала определяют количество испарившейся из материала влаги и отводят ее в конденсатор, причем по текущему расходу испарившейся из материала влаги устанавливают расход холодной воды в конденсатор; по измеренному значению разряжения в процессе сушки устанавливают температуру холодной воды, направляемой в конденсатор воздействием на соотношение расходов рабочего пара и паров хладагента путем изменения расхода рабочего пара; необходимый уровень конденсата в барометрической трубе поддерживают воздействием на его расход из сборника конденсата барометрической трубы.

Технический результат изобретения заключается в получении готового продукта высокого качества, увеличении выхода готового продукта и снижении удельных теплоэнергетических затрат.

На фиг. 1 представлена схема управления процессом сушки высоковлажных дисперсных материалов.

Схема содержит герметичную сушильную камеру 1, снабженную шлюзовыми затворами 2, 3, наклонной перфорированной решеткой 4 с виброприводом 5, патрубками подвода отвода перегретого пара 6, 7; делитель потоков отработанного перегретого пара 8; вентилятор 9; конденсатор-пароперегреватель 10; конденсатор 11, включающий патрубки подвода отработанного перегретого пара 12, отвода несконденсировавшихся газов 13, подвода холодной воды 14 и барометрическую трубу 15 с патрубком отвода конденсата на охлаждение 16; сборник конденсата 17 с вентилем для сброса избыточного конденсата 18; насос для холодной воды 19; пароэжекторную холодильную машину, состоящую из парогенератора 20 с предохранительным клапаном 21, эжектора 22, насоса 23, регулирующего вентиля 24, испарителя 25, теплообменника-рекуператора 26, регулирующих клапанов 27, 28, 29; микропроцессор 30; датчики: FE - расхода, WE - влажности, TE - температуры, PE - давления, HE - уровня, AE -амплитуды колебаний, nE - частоты колебаний.

Предлагаемый способ управления процессом сушки высоковлажных дисперсных материалов осуществляется следующим образом.

Исходный влажный материал с помощью шлюзового затвора 2 подают в герметичную сушильную камеру 1, где осуществляют его сушку до конечной влажности в виброкипящем слое перегретым паром под разряжением. Материал в камере перемещается по наклонной перфорированной решетке 4, соединенной с виброприводом 5. Высушенный до требуемой влажности готовый продукт выводят из камеры 1 с помощью шлюзового затвора 3.

Отработанный перегретый пар из сушильной камеры 1 отводят через патрубок 7 в делитель 8, который разделяет его на два потока. Один поток с помощью вентилятора 9 направляют в конденсатор-пароперегреватель 10, где осуществляют его перегрев посредством рекуперативного теплообмена с греющим паром и возвращают в камеру 1 через патрубок 6 с образованием контура рециркуляции.

Второй поток отработанного перегретого пара в количестве, равном количеству испарившейся из материала влаги, направляют в конденсатор 11 через патрубок 12. В конденсаторе происходит конденсация этих паров за счет теплообмена без границы раздела поверхности фаз в противотоке с холодной водой, непрерывно подаваемой сверху в конденсатор через патрубок 14 насосом 19 с достижением необходимого разряжения. Несконденсировавшиеся газы выводят из конденсатора 11 через патрубок 13.

Образовавшийся конденсат удаляют из конденсатора 11 через барометрическую трубу 15, которую используют для уравновешивания имеющегося в ней столба воды атмосферным давлением, в сборник конденсата 17, используемый для бесперебойного создания разряжения в установке. С помощью вентиля 18 из сборника 17 отводят избыток конденсата на технологические нужды. Барометрическая труба 15 снабжена патрубком 16, через который отбирают такое количество образовавшегося конденсата, которое необходимо для создания разряжения, и подают на охлаждение в теплообменник-рекуператор 26 и далее насосом 19 возвращают в конденсатор 14 с образованием контура рециркуляции.

Охлаждение отведенного конденсата в теплообменнике-рекуператоре 26 осуществляют за счет рекуперативного теплообмена с парами хладагента пароэжекторной холодильной машины, состоящей из испарителя 25, теплообменника-рекуператора 26, эжектора 22, конденсатора-пароперегревателя 10, терморегулирующего вентиля 24 и парогенератора 20 с предохранительным клапаном 21.

В парогенераторе 20 с электронагревательными элементами при затрате электроэнергии образуется рабочий пар, который направляют в эжектор 22, создавая при этом разряжение в испарителе 25. Причем потенциальная энергия рабочего пара превращается в кинетическую энергию струи, которая вытекает из эжектора 22 с большой скоростью, и под действием энергии струи пары хладагента, в качестве которого используют воду, поступают из испарителя 25 в теплообменник-рекуператор 26 на охлаждение конденсата, отведенного из барометрической трубы 15 в результате рекуперативного теплообмена. Полученная после эжектирования смесь рабочего пара и паров хладагента образует греющий пар, который направляют в конденсатор-пароперегреватель 10. Конденсируясь, он отдает теплоту пару, который становится перегретым, и подают его в сушильную камеру 1 через патрубок 6.

Образовавшийся при этом конденсат греющего пара насосом 23 возвращают в пароэжекторную холодильную машину для подготовки рабочего пара и хладагента. Причем одну часть конденсата направляют через терморегулирующий вентиль 24 в испаритель 25 для пополнения убыли воды, а другую его часть отводят в парогенератор 20 с образование контура рециркуляции.

По текущей информации о влажности и расходе влажного исходного материала, получаемой с датчиков, микропроцессор 30 с помощью исполнительного механизма вибропривода 5, соединенного с решеткой 4, устанавливает необходимые амплитуду и частоту колебаний виброкипящего слоя в сушильной камере 1, а также расход и температуру перегретого пара на входе в камеру 1 воздействием на исполнительные механизмы соответственно вентилятора 9 и регулирующего клапана 27. При этом коррекцию по влажности сухого материала микропроцессор 30 осуществляет воздействием на расход исходного материала с помощью исполнительного механизма питателя 2.

По текущим значениям расхода и влажности исходного и сухого материала, получаемых с датчиков, установленных на входе и выходе из сушильной камеры 1, микропроцессор 30 определяет количество испарившейся из материала влаги, которую с помощью исполнительного механизма делителя потоков 8 отводят в конденсатор 11. Причем по текущему расходу испарившейся из материала влаги микропроцессор 30 устанавливает расход холодной воды в конденсатор посредством исполнительного механизма насоса 29.

По измеренному с помощью датчика давления значению разряжения в сушильной камере 1 устанавливают температуру холодной воды, направляемой в конденсатор 11, воздействием на соотношение расходов рабочего пара и паров хладагента путем изменения расхода рабочего пара в эжектор с помощью исполнительного механизма регулирующего клапана 29. Необходимый уровень конденсата в барометрической трубе поддерживают воздействием на его расход из сборника конденсата 17 с помощью исполнительного механизма вентиля 18.

Информация о текущем значении уровня конденсата в парогенераторе 20 передается в микропроцессор 30. При изменении уровня конденсата микропроцессор осуществляет двухпозиционное регулирование исполнительным механизмом привода насоса 23, включает питающий насос при достижении уровня конденсата в парогенераторе нижнего заданного значения и отключает его при достижении верхнего заданного значения.

В случае технологических и аварийных сбоев в работе парогенератора, связанных с возможным увеличением давления насыщенного водяного пара в его рабочем объеме, предусмотрен предохранительный клапан 21.

Таким образом, предлагаемый способ управления процессом сушки высоковлажных дисперсных материалов позволяет:

- получить готовый продукт высокого качества, так как обеспечивается оперативное управление технологическими параметрами процесса сушки высоковлажных дисперсных материалов;

- достичь высокого выхода готового продукта за счет рациональных режимов работы оборудования в зависимости от подаваемых на него нагрузок;

- получить высокий выход готового продукта и снизить теплоэнергетические затраты вследствие обеспечения точности и надежности управления процессом сушки высоковлажных дисперсных материалов.

Похожие патенты RU2581012C1

название год авторы номер документа
СПОСОБ СУШКИ ВЫСОКОВЛАЖНЫХ ДИСПЕРСНЫХ МАТЕРИАЛОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Дранников Алексей Викторович
RU2487652C1
СПОСОБ ОХЛАЖДЕНИЯ И КОНДЕНСАЦИИ ПАРОГАЗОВОЙ СМЕСИ И СМЕСИТЕЛЬНАЯ КОНДЕНСАЦИОННАЯ СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2016
  • Везиров Рустем Руждиевич
  • Везиров Исмагил Рустемович
RU2648803C1
Способ сушки высоковлажных дисперсных материалов и установка для его осуществления 2017
  • Дранников Алексей Викторович
  • Шевцов Александр Анатольевич
  • Костина Евгения Васильевна
  • Дерканосова Анна Александровна
  • Бородовицын Андрей Михайлович
  • Полканов Андрей Сергеевич
RU2674610C1
СПОСОБ СУШКИ ВЫСОКОВЛАЖНЫХ ДИСПЕРСНЫХ МАТЕРИАЛОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Дранников Алексей Викторович
  • Шевцов Александр Анатольевич
  • Костина Евгения Васильевна
RU2422053C1
СПОСОБ ВЛАГОТЕПЛОВОЙ ОБРАБОТКИ ЗЕРНА КРУПЯНЫХ КУЛЬТУР С ИСПОЛЬЗОВАНИЕМ ПОБОЧНЫХ ПРОДУКТОВ ИХ ПЕРЕРАБОТКИ В ТЕХНОЛОГИИ КОМБИКОРМОВ 2012
  • Шевцов Александр Анатольевич
  • Лыткина Лариса Игоревна
  • Дранников Алексей Викторович
  • Клейменов Алексей Иванович
RU2492697C1
СПОСОБ ПОЛУЧЕНИЯ ОБЖАРЕННЫХ ЗЕРНОПРОДУКТОВ 2010
  • Шевцов Сергей Александрович
  • Острикова Елена Александровна
RU2454871C2
Способ получения обжаренных зернопродуктов 2016
  • Лыткина Лариса Игоревна
  • Острикова Елена Александровна
  • Шевцов Александр Анатольевич
  • Дранников Алексей Викторович
  • Гуме Бенедито Агостиньо
  • Ситникова Анастасия Сергеевна
RU2621979C1
Способ управления получением микрокапсулированного холинхлорида 2018
  • Дерканосова Анна Александровна
  • Дранников Алексей Викторович
  • Ходякова Валентина Александровна
  • Ориничева Анастасия Андреевна
RU2687022C1
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ПОЛУЧЕНИЯ ОБЖАРЕННЫХ ЗЕРНОПРОДУКТОВ 2007
  • Шевцов Александр Анатольевич
  • Ткачев Андрей Геннадьевич
  • Острикова Елена Александровна
RU2328140C1
Способ получения микрокапсулированного холинхлорида из его водного раствора 2016
  • Шевцов Александр Анатольевич
  • Дранников Алексей Викторович
  • Шенцова Евгения Сергеевна
  • Дерканосова Анна Александровна
  • Костина Евгения Васильевна
  • Квасов Александр Вячеславович
RU2640843C1

Иллюстрации к изобретению RU 2 581 012 C1

Реферат патента 2016 года СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ПРОЦЕССОМ СУШКИ ВЫСОКОВЛАЖНЫХ ДИСПЕРСНЫХ МАТЕРИАЛОВ

Изобретение относится к автоматизации технологических процессов и может быть использовано для сушки высоковлажных дисперсных материалов, таких, как свекловичный жом, яблочные и виноградные выжимки и т.п. Способ автоматического управления процессом сушки высоковлажных дисперсных материалов характеризуется тем, что он предусматривает сушку исходного материала в виброкипящем слое перегретым паром под разряжением с разделением отработанного перегретого пара на два потока. Дополнительно измеряют расход и влажность материала до и после сушки, амплитуду и частоту колебаний виброкипящего слоя, разряжение перегретого пара в процессе сушки, расход и температуру перегретого пара на входе в виброкипящий слой материала, расход отработанного перегретого пара, направляемого в конденсатор, расход и температуру холодной воды, расходы рабочего пара и паров хладагента, уровней конденсата в барометрической трубе и воды в парогенераторе, давления паров в парогенераторе. В результате чего определяют необходимые параметры процесса сушки. Технический результат изобретения заключается в получении готового продукта высокого качества, увеличении выхода готового продукта и снижении удельных теплоэнергетических затрат. 1 ил.

Формула изобретения RU 2 581 012 C1

Способ автоматического управления процессом сушки высоковлажных дисперсных материалов, характеризующийся тем, что он предусматривает сушку исходного материала в виброкипящем слое перегретым паром под разряжением с разделением отработанного перегретого пара на два потока, один из которых перегревают в конденсаторе-пароперегревателе посредством рекуперативного теплообмена с греющим паром и затем возвращают на сушку с образованием замкнутого цикла, а второй поток в количестве испарившейся из материала влаги конденсируют в конденсаторе с барометрической трубой за счет теплообмена без границы раздела поверхности фаз в противотоке с холодной водой, в результате чего в процессе сушки создают необходимое разряжение, причем часть образовавшегося конденсата из барометрической трубы охлаждают и возвращают в конденсатор в количестве, необходимом для создания разряжения, используют пароэжекторную холодильную машину, состоящую из испарителя, теплообменника-рекуператора, эжектора, конденсатора-пароперегревателя, терморегулирующего вентиля и парогенератора, работающих по замкнутому термодинамическому циклу, при этом охлаждение конденсата из барометрической трубы осуществляют в результате рекуперативного теплообмена с парами хладагента, в качестве которого используют воду, причем пары хладагента эжектируются из испарителя в эжектор рабочим паром, а полученную после эжектирования смесь рабочего пара и паров хладагента в качестве греющего пара направляют в конденсатор-пароперегреватель на перегрев пара, направляемого на сушку, образовавшийся при этом конденсат греющего пара возвращают на пополнение уровня воды в парогенераторе и испарителе, дополнительно измеряют расход и влажность материала до и после сушки, амплитуду и частоту колебаний виброкипящего слоя, разряжение перегретого пара в процессе сушки, расход и температуру перегретого пара на входе в виброкипящий слой материала, расход отработанного перегретого пара, направляемого в конденсатор, расход и температуру холодной воды, расходы рабочего пара и паров хладагента, уровней конденсата в барометрической трубе и воды в парогенераторе, давления паров в парогенераторе, по текущим значениям расхода и влажности исходного материала устанавливают амплитуду и частоту колебаний виброкипящего слоя, расход и температуру перегретого пара на процесс сушки с коррекцией по влажности сухого материала воздействием на расход исходного материала, по текущим значениям расхода и влажности исходного и сухого материала определяют количество испарившейся из материала влаги и отводят ее в конденсатор, причем по текущему расходу испарившейся из материала влаги устанавливают расход холодной воды в конденсатор, по измеренному значению разряжения в процессе сушки устанавливают температуру холодной воды, направляемой в конденсатор воздействием на соотношение расходов рабочего пара и паров хладагента путем изменения расхода рабочего пара, необходимый уровень конденсата в барометрической трубе поддерживают воздействием на его расход из сборника конденсата барометрической трубы.

Документы, цитированные в отчете о поиске Патент 2016 года RU2581012C1

СПОСОБ СУШКИ ВЫСОКОВЛАЖНЫХ ДИСПЕРСНЫХ МАТЕРИАЛОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Дранников Алексей Викторович
RU2487652C1
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ПРОЦЕССОМ СУШКИ 2003
  • Кретов И.Т.
  • Шевцов А.А.
  • Кравченко В.М.
  • Дранников А.В.
RU2239138C1
СПОСОБ СУШКИ ВЫСОКОВЛАЖНЫХ ДИСПЕРСНЫХ МАТЕРИАЛОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Дранников Алексей Викторович
  • Шевцов Александр Анатольевич
  • Костина Евгения Васильевна
RU2422053C1
KR 1020120055260 A, 31.05.2012 .

RU 2 581 012 C1

Авторы

Шевцов Александр Анатольевич

Дранников Алексей Викторович

Куцов Сергей Владимирович

Дерканосова Анна Александровна

Костина Евгения Васильевна

Квасов Александр Вячеславович

Даты

2016-04-10Публикация

2015-04-01Подача