Изобретение относится к обогащению полезных ископаемых, например, при разработке золото-платиносодержащих россыпных месторождений с содержанием мелких и тонких частиц. Известен способ извлечения частиц полезного ископаемого при разработке россыпей, включающий: промывку, дезинтеграцию, гравитационное обогащение в шлюзах глубокого наполнения и мелкого наполнения, сполоск концентрата с улавливающих поверхностей (Шохин В.Н., Лопатин А.Г. Гравитационные методы обогащения. М.: Недра, 1980, с 280-308).
Однако, известное решение недостаточно эффективно обеспечивает извлечение мелких и тонких частиц полезного ископаемого при разработке россыпных месторождений.
Известен способ извлечения мелких и тонких частиц полезного ископаемого при разработке россыпей (патент RU 2172648 C1, B03B 5/70), включающий: промывку, дезинтеграцию, гравитационное обогащение на шлюзах глубокого, мелкого наполнения и сполоск в количественном соотношении: для глубокого наполнения - 1:3-1:4 или через 15-20 суток, а мелкого наполнения - 1:6-1:12 или через 17-24 часа. Однако данный способ только за счет частоты сполоска недостаточно эффективно обеспечивает улавливание и соответственно извлечение мелких и тонких частиц.
Наиболее близким по совокупности существенных признаков является способ извлечения мелкого тонкого золота при гидромеханизированной разработки россыпей (патент RU 2277974 С2, В03В 07/00), включающий промывку, гравитационное обогащение на шлюзах мелкого наполнения, грохочение на гидрогрохоте с выделением фракции - 5 мм, которую направляют на шлюз, после которого грохочением выделяют фракцию минус 1,5 мм, направляемую в концентратор тяжелых минералов.
Однако данный способ нецелесообразно перегружен рядом последовательных обогатительных устройств, усложняющих монтаж, перестановку и эксплуатацию комплекса.
Основной задачей изобретения является повышение эффективности извлечения мелких и тонких частиц полезного ископаемого за счет двухстадийной схемы обогащения. Первая стадия обогащения осуществляется на широко распространенном оборудовании (гидроэлеваторном, вашгердном, скрубберном) и состоит из промывки, дезинтеграции, грохочения песков и гравитационного обогащения на шлюзе, а вторая стадия обогащения осуществляется на модуле тонкого обогащения, подсоединяемого к шлюзу основного оборудования.
Для решения поставленной задачи пульпа (после первой стадии обогащения) на модуле тонкого обогащения подвергается концентрации, грохочению на шлюзе-виброгрохоте с непрерывным выделением фракции - 4 мм. Подрешетный продукт класса - 4 мм насосом или гидроэлеватором подается по пульповоду в гидроциклон. В пульповоде материал подвергается дезинтеграции за счет кавитационных процессов и центробежных сил. Протяженность и кривизна трассы пульповода выбирается в зависимости от промывостости песков и необходимой высоты подъема пульпы. Материал после прохождения по пульповоду поступает в гидроциклон, где подвергается процессу обезвоживания, дешламинации и дополнительной дезинтерации. Тяжелая фракция через выпускное отверстие гидроциклона поступает в качающийся доводочный шлюз для более тонкого гравитационного обогащения и концентрации мелких и тонких частиц полезного ископаемого класса до 0,1 мм.
На фиг. представлена схема модуля тонкого обогащения, состоящего из шлюза-виброгрохота 1, подсоединенного к основному шлюзу промприбора, приемного бункера 2, грунтонасоса или гидроэлеватора 3, пульповода 4, гидроциклона 5 и качающегося доводочного шлюза 6.
Модуль тонкого обогащения работает следующим образом. Пульпа после первой стадии обогащения на шлюзе промприбора поступает на шлюз-виброгрохот 1 модуля тонкого обогащения для выделения мелкой фракции - 4 мм. Отгрохоченная фракция собирается в приемном бункере 2, откуда грунтнасосом или гидрозлеватором 3 по пульповоду 4 подается в гидроциклон 5. В пульповоде за счет кавитационных и центробежных процессов в потоке пульпа проходит дезинтеграцию (расщепление частиц). В гидроциклоне 5 пульпа подвергается дополнительной дезинтеграции, обезвоживанию и дешламинации. Тяжелая фракция через выпускное отверстие гидроциклона поступает в шлюз качающийся доводочный 6 для тонкого гравитационного обогащения и концентрации полезного ископаемого класса до 0,1 мм.
Изобретение относится к обогащению полезных ископаемых и, в частности, к разработке золото-платиносодержащих россыпных месторождений с содержанием мелких и тонких частиц. Технический результат - повышение эффективности обогащения за счет его стадийности. Модуль тонкого обогащения включает шлюз-виброгрохот для улавливания и непрерывного выделения при грохочении мелких и тонких частиц тяжелой фракции - 4 мм. Шлюз-виброгрохот подсоединен к основному шлюзу первой стадии обогащения. Устройство содержит также приемный бункер для сбора отгрохоченной фракции, пульповод, протяженность которого и кривизна выбраны в зависимости от промывности материала и необходимой высоты подъема пульпы. При этом в пульповоде обеспечена возможность дезинтеграции материала пульпы кавитационными процессами и центробежными силами. Собственно пульповод обеспечивает подачу пульпы в гидроциклон с выпускным отверстием, который предназначен для дополнительной дезинтеграции материала пульпы, ее обезвоживания, дешламинации и отгрузки тяжелой фракции в доводочный шлюз гравитационного обогащения. Этот шлюз обеспечивает в качающемся режиме концентрацию полезной тяжелой фракции до 0,1 мм. 1 ил.
Модуль тонкого обогащения, включающий шлюз-виброгрохот для улавливания и непрерывного выделения при грохочении мелких и тонких частиц тяжелой фракции - 4 мм, который подсоединен к основному шлюзу первой стадии обогащения, приемный бункер для сбора отгрохоченной фракции, пульповод, протяженность которого и кривизна выбраны в зависимости от промывности материала и необходимой высоты подъема пульпы, при этом в пульповоде обеспечена возможность дезинтеграции материала пульпы кавитационными процессами и центробежными силами, а собственно пульповод обеспечивает подачу пульпы в гидроциклон с выпускным отверстием, который предназначен для дополнительной дезинтеграции материала пульпы, ее обезвоживания, дешламинации и отгрузки тяжелой фракции в доводочный шлюз гравитационного обогащения, обеспечивающий в качающемся режиме концентрацию полезной тяжелой фракции до 0,1 мм.
СПОСОБ ИЗВЛЕЧЕНИЯ МЕЛКОГО ТОНКОГО ЗОЛОТА ПРИ ГИДРОМЕХАНИЗИРОВАННОЙ РАЗРАБОТКЕ РОССЫПЕЙ | 2004 |
|
RU2277974C2 |
ПОТОЧНАЯ ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ПО ПЕРЕРАБОТКЕ МЕТАЛЛОСОДЕРЖАЩЕЙ СМЕСИ РОССЫПНЫХ ПОРОД | 1994 |
|
RU2078616C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ БЛАГОРОДНОГО МЕТАЛЛА ИЗ ТЕХНОГЕННЫХ ОТВАЛОВ ПРИ ИСПОЛЬЗОВАНИИ ВОЛН РАЗЛИЧНОЙ ФИЗИЧЕСКОЙ ПРИРОДЫ | 2009 |
|
RU2422209C1 |
ПОТОЧНАЯ ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ПО ПЕРЕРАБОТКЕ МЕТАЛЛОСОДЕРЖАЩЕЙ СМЕСИ РОССЫПНЫХ ПОРОД | 1994 |
|
RU2078616C1 |
СПОСОБ ПРОМЫВКИ ЗОЛОТОНОСНЫХ ПЕСКОВ ПРИ ИСПОЛЬЗОВАНИИ ВОЛН РАЗЛИЧНОЙ ФИЗИЧЕСКОЙ ПРИРОДЫ | 2002 |
|
RU2214866C1 |
US 4523682 A1, 18.06.1985 | |||
ЗАМЯТИН О | |||
В | |||
и др., Обогащение золотосодержащих песков и конгломератов, Москва, Недра, 1975, с | |||
Приспособление, заменяющее сигнальную веревку | 1921 |
|
SU168A1 |
Клапанный регулятор для паровозов | 1919 |
|
SU103A1 |
Авторы
Даты
2016-04-10—Публикация
2014-02-25—Подача