ФОЛЬГОВЫЙ ЗАРЯДОВЫЙ СПЕКТРОГРАФ Российский патент 2016 года по МПК G01T1/00 

Описание патента на изобретение RU2581728C1

Изобретение относится к области дозиметрии и спектрометрии импульсных ионизирующих излучений ускорителей, в частности импульсного электронного и тормозного излучений. Изобретение может быть использовано для определения спектрально-энергетических характеристик электронного излучения сильноточных импульсных ускорителей.

Известно устройство (патент РФ 2281532) для комплексного измерения спектрально-энергетических характеристик импульсного электронного и тормозного излучения ускорителя, содержащее магнитоиндукционный преобразователь тока пучка электронов, мишень-конвертер для преобразования электронного излучения в тормозное излучение, преобразователь мощности экспозиционной дозы тормозного излучения, при этом мишень выполнена в виде двух слоев, устройство дополнительно содержит цилиндрический корпус, в котором расположен магнитоиндукционный преобразователь тока пучка электронов, снабженный экраном с входным и выходным окнами для защиты пучка электронов от внешних электрических полей, входное окно экрана перекрыто первым слоем мишени, выполненным из легкоатомного металла, а его выходное окно перекрыто теплоизолированным от упомянутого экрана вторым слоем мишени, выполненным из тяжелоатомного металла со встроенным преобразователем поглощенной энергии терморезисторного или термопарного типа, причем слои мишени и экран электрически соединены между собой, при этом магнитоиндукционный преобразователь тока, преобразователь поглощенной энергии в мишени и преобразователь мощности экспозиционной дозы соединены посредством линий связи с соответствующими регистраторами и электронно-вычислительной машиной, положение первого слоя мишени, являющегося анодом, образует ускоряющий промежуток ускорителя, а преобразователь мощности экспозиционной дозы располагается в формируемой ускорителем изодозовой плоскости облучения образца в поле тормозного излучения.

Недостатком данного устройства является сложность и косвенный характер измерений.

Известен способ (патент РФ №884818), в котором измеряют распределение поглощенной дозы гамма-излучения у поверхности раздела двух сред с различными атомными номерами, а после математической обработки дозиметрической кривой определяют спектр вторичных электронов, который приравнивают к осредненному спектру гамма-излучения, при этом измеряют по крайней мере две дозиметрические кривые у границы раздела двух поглотителей, одним из которых являются металлические фольги с разными толщинами и атомными номерами, причем толщину первой из них выбирают равной экстраполированному пробегу электронов в фольге Rэ (Е, Zф) со средней энергией Е из всего спектра вторичных электронов, а последующих - в пределах (0-0,5) Rэ (Е, Zфi), где Zфi = (2-20) Zn - атомный номер i-той фольги и Zn - атомный номер поглотителя. Недостатком данного способа является косвенный характер измерений, кроме того, при поглощении часть заряженных частиц испытывает обратное отражение и переизлучение с поверхности фольг, что значительно снижает точность измерений.

Технической задачей настоящего изобретения является упрощение способа измерения распределения электронов по энергиям, повышение точности за счет реализации прямых измерений.

Указанный технический результат достигается тем, что предложен фольговый зарядовый спектрограф, содержащий пакет из N металлических фольг, общая толщина которых подбирается из условия равенства экстраполированному пробегу электронов d максимальной энергии электронов Е<511 кэВ, при этом фольги расположены параллельно друг другу в вакуумной камере при значении давления Р = 10-6÷10-7 Па, каждая фольга подсоединена к отдельной емкости, накапливающей поглощенный данной фольгой заряд, имеющей отдельный разъем для снятия зарядовых характеристик, и полностью покрыта диэлектрической пленкой толщиной не более 2 мкм.

Спектрограф работает следующим образом. После генерации пучок заряженных частиц (электронов) проходит последовательно через каждую фольгу из пакета (набора N фольг) и заряжает весь набор конденсаторов, соединенных последовательно с каждой из фольг. При этом на первой фольге остаются электроны с минимальной энергией, на второй фольге с большей энергией и, наконец, на N-той фольге электроны с максимальной энергией. Общая толщина N фольг выбирается из условия полного поглощения заряженных частиц (электронов) с максимальной энергией. Для того чтобы не происходило переотражение электронов и не вносило искажение в их распределение по энергиям, каждую фольгу покрывают слоем диэлектрика (полимера) такой толщины, чтобы работа выхода для поглощенных электронов была значительно больше, чем средняя энергия случайных, переотраженных электронов. Последовательно, с помощью переключателя с необходимым интервалом времени примерно 10-15 сек, каждый из конденсаторов подсоединяется к баллистическому гальванометру, который определяет заряд каждого конденсатора по углу отклонения стрелки предварительно откалиброванного по эталонному источнику гальванометра.

Возможность достижения технического результата обеспечивается тем, что в процессе прохождения электронов через набор металлических фольг, покрытых диэлектрическим слоем (например, слоем нитроцеллюлозы толщиной до 2 мкм), быстрые электроны основного спектра проходят через диэлектрический слой практически без потерь и поглощаются только на фольге определенного номера, а низкоэнергетические вторичные электроны, энергия которых меньше работы выхода из диэлектрика, не переизлучаются, оставаясь в данной фольге, и не влияют на точность измерений. Так как каждая фольга соединена с конденсатором постоянной ёмкости, то ее потенциал чрезвычайно мал и относительная погрешность измерения находится в пределах 1-2 %. В то время как аналогичные фольговые спектрографы, не покрытые слоем диэлектрика, дают относительную погрешность измерения в пределах 20-30%. Таким образом, с заданной степени точности (варьированием толщины и количества фольг) получается распределение электронов по глубине образца. Из данного распределения, например, в области низких энергий до 511 кэВ по известным зависимостям ионизационных потерь электронов от глубины проникновения в материал можно получать распределение электронов по энергиям.

Пример 1. Изготовлен спектрограф, содержащий пакет из 15 алюминиевых фольг толщиной 1 мкм, расположенных параллельно друг другу в вакуумной камере на расстоянии 1 мм друг от друга, при значении давления Р=10-6÷10-7 Па в вакуумной камере и энергетическом спектре электронов, излучаемых генератором импульсных напряжений ГИН -400 в интервале Е=10÷300 кэВ, плотность потока электронов Ф=1·1014 эл/см2, при этом каждая фольга была подсоединена к отдельному конденсатору постоянной ёмкости 10 МКФ, имеющему отдельный разъем для соединения с баллистическим гальванометром M1510A с пределом измерений 100 мкА, при этом каждая фольга была покрыта слоем нитроцеллюлозы толщиной 1 мкм методом окунания в раствор нитролака. На фиг. 1 изображен акустический отклик давления σ(Па) 1, возбуждаемый в данном образце при облучении образца алюминия потоком электронов заданной плотности Ф=1·1014 эл/см2. Видно, что при этом глубина d экстраполированного пробега электронов в алюминии не превышает 15 мкм. На фиг. 2 изображена полученная экспериментальная зависимость 1 между 15 значениями заряда Q(Кл·10-7), приходящегося на каждую из 15 алюминиевых фольг при данной плотности потока электронов. Ф=1·1014 эл/см2.

Пример 2. Изготовлен спектрограф, содержащий пакет из 15 алюминиевых фольг толщиной 1 мкм, расположенных параллельно друг другу в вакуумной камере на расстоянии 1 мм друг от друга, при значении давления Р=10-6÷10-7 Па в вакуумной камере и энергетическом спектре электронов, излучаемых генератором импульсных напряжений ГИН -400 в интервале Е=10÷300 кэВ, плотность потока электронов Ф=0,77·1014 эл/см2 , при этом каждая фольга была подсоединена к отдельному конденсатору постоянной ёмкости 10 МКФ, имеющему отдельный разъем для соединения с баллистическим гальванометром M1510A с пределом измерений 100 мкА, при этом каждая фольга была покрыта слоем нитроцеллюлозы толщиной 1,5 мкм методом окунания в раствор нитролака. На фиг. 1 изображен акустический отклик σ(Па) 2, возбуждаемый в данном образце при облучении образца алюминия потоком электронов заданной плотности Ф=0,77·1014 эл/см2. При этом также глубина d экстраполированного пробега электронов в алюминии не превышает 15 мкм. На фиг. 2 изображена полученная экспериментальная зависимость 2 между 15 значениями заряда Q(Кл·10-7), приходящегося на каждую из 15 алюминиевых фольг при данной плотности потока электронов Ф=0,77·1014 эл/см2.

Пример 3. Изготовлен спектрограф, содержащий пакет из 15 алюминиевых фольг толщиной 1 мкм, расположенных параллельно друг другу в вакуумной камере на расстоянии 1 мм друг от друга, при значении давления Р=10-6÷10-7 Па в вакуумной камере и энергетическом спектре электронов, излучаемых генератором импульсных напряжений ГИН -400 в интервале Е=10÷300 кэВ, плотность потока электронов Ф=0,5·1014 эл/см2, при этом каждая фольга была подсоединена к отдельному конденсатору постоянной ёмкости 10 МКФ, имеющему отдельный разъем для соединения с баллистическим гальванометром M1510A с пределом измерений 100 мкА, каждая фольга была покрыта слоем нитроцеллюлозы толщиной 2 мкм методом окунания в раствор нитролака. На фиг. 1 изображен акустический отклик σ(Па) 3, возбуждаемый в данном образце при облучении образца алюминия потоком электронов заданной плотности Ф=0,5·1014 эл/см2. Глубина d экстраполированного пробега электронов в алюминии не превышает 15 мкм. На фиг. 2 изображена полученная экспериментальная зависимость 3 между 15 значениями заряда Q(Кл·10-7), приходящегося на каждую из 15 алюминиевых фольг (толщиной d) при данной плотности потока электронов Ф=0,5·1014 эл/см2.

Похожие патенты RU2581728C1

название год авторы номер документа
Способ оперативного мониторинга энергии заряженных частиц при выполнении операций лучевой терапии 2023
  • Яковлев Михаил Викторович
RU2809829C1
СПЕКТРОМЕТР ЗАРЯЖЕННЫХ ЧАСТИЦ 2019
  • Курапов Николай Николаевич
  • Шориков Игорь Витальевич
  • Бодряшкин Яков Вячеславович
  • Черкасов Александр Сергеевич
  • Тельнов Александр Валентинович
RU2707270C1
СПОСОБ АТОМНО-АБСОРБЦИОННОГО СПЕКТРАЛЬНОГО АНАЛИЗА ЭЛЕМЕНТНОГО СОСТАВА ВЕЩЕСТВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1998
  • Корепанов В.И.
  • Лисицын В.М.
  • Олешко В.И.
RU2157988C2
СПОСОБ ДИАГНОСТИКИ ЭЛЕКТРИЧЕСКИХ МИКРОНЕОДНОРОДНОСТЕЙ В ПОЛУПРОВОДНИКОВЫХ ГЕТЕРОСТРУКТУРАХ НА ОСНОВЕ InGaN/GaN 2015
  • Олешко Владимир Иванович
  • Горина Светлана Геннадьевна
RU2606200C1
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД 2011
  • Маркелов Виталий Анатольевич
  • Михаленко Вячеслав Александрович
  • Маслов Алексей Станиславович
  • Сярг Борис Альфетович
  • Попов Александр Валентинович
  • Ремнев Геннадий Ефимович
  • Степанов Андрей Владимирович
  • Кайканов Марат Исламбекович
  • Меринова Лилия Рашидовна
  • Егоров Иван Сергеевич
RU2473469C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЭНЕРГИИ ТЯЖЕЛЫХ ЗАРЯЖЕННЫХ ЧАСТИЦ 1991
  • Бурликов В.Л.
  • Бавижев М.Д.
  • Воробьев С.А.
  • Каргапольцев А.В.
  • Симанчук В.И.
RU2007898C1
СПОСОБ ПОЛУЧЕНИЯ ТОНКОСЛОЙНОГО, ОСНОВАННОГО НА ЭФФЕКТАХ ТЕРМИЧЕСКИ И/ИЛИ ОПТИЧЕСКИ СТИМУЛИРОВАННОЙ ЛЮМИНЕСЦЕНЦИИ ДЕТЕКТОРА ЗАРЯЖЕННЫХ ЧАСТИЦ ЯДЕРНЫХ ИЗЛУЧЕНИЙ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ 2012
  • Ильвес Владислав Генрихович
  • Соковнин Сергей Юрьевич
  • Сюрдо Александр Иванович
  • Власов Максим Игоревич
  • Мильман Игорь Игоревич
RU2507629C2
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2006
  • Котов Юрий Александрович
  • Соковнин Сергей Юрьевич
  • Ильвес Владислав Генрихович
  • Чанг Ку Ри
RU2353573C2
СПОСОБ ИОНИЗАЦИИ АНАЛИЗИРУЕМЫХ ВЕЩЕСТВ В ИОНИЗАЦИОННОЙ КАМЕРЕ АНАЛИЗАТОРА СОСТАВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Деринг Х-Р
RU2208874C2
Способ получения тонкослойных детекторов ионизирующих излучений для кожной и глазной дозиметрии, использующий стандартный детектор AlO:С на базе анион-дефектного корунда 2018
  • Сарычев Максим Николаевич
  • Мильман Игорь Игориевич
  • Сюрдо Александр Иванович
  • Абашев Ринат Мансурович
RU2697661C1

Иллюстрации к изобретению RU 2 581 728 C1

Реферат патента 2016 года ФОЛЬГОВЫЙ ЗАРЯДОВЫЙ СПЕКТРОГРАФ

Изобретение относится к области дозиметрии и спектрометрии импульсных ионизирующих излучений ускорителей, в частности импульсного электронного и тормозного излучений. Фольговый зарядовый спектрограф содержит пакет из N металлических фольг, общая толщина которых подбирается из условия равенства экстраполированному пробегу электронов d максимальной энергии электронов Ε<511 кэВ, при этом фольги расположены параллельно друг другу в вакуумной камере при значении давления Ρ=10-6÷10-7 Па, каждая фольга подсоединена к отдельной емкости, накапливающей поглощенный данной фольгой заряд, имеющей отдельный разъем для снятия зарядовых характеристик, и полностью покрыта диэлектрической пленкой толщиной не более 2 мкм. Технический результат - упрощение способа измерения распределения электронов по энергиям, повышение точности измерений. 2 ил.

Формула изобретения RU 2 581 728 C1

Фольговый зарядовый спектрограф, содержащий пакет из N металлических фольг, общая толщина которых подбирается из условия равенства экстраполированному пробегу электронов d максимальной энергии электронов Ε<511 кэВ, при этом фольги расположены параллельно друг другу в вакуумной камере при значении давления P=10-6÷10-7 Па, каждая фольга подсоединена к отдельной емкости, накапливающей поглощенный данной фольгой заряд, имеющей отдельный разъем для снятия зарядовых характеристик, и полностью покрыта диэлектрической пленкой толщиной не более 2 мкм.

Документы, цитированные в отчете о поиске Патент 2016 года RU2581728C1

УСТРОЙСТВО ДЛЯ КОМПЛЕКСНОГО ИЗМЕРЕНИЯ СПЕКТРАЛЬНО-ЭНЕРГЕТИЧЕСКИХ ХАРАКТЕРИСТИК ЭЛЕКТРОННОГО И ТОРМОЗНОГО ИЗЛУЧЕНИЯ УСКОРИТЕЛЕЙ 2005
  • Мордасов Николай Григорьевич
  • Иващенко Дмитрий Михайлович
  • Членов Александр Михайлович
RU2281532C1
Способ изготовления железобетонных тюбингов для облицовки туннелей на центробежных установках и устройство для осуществления способа 1958
  • Толстой В.С.
  • Шишкинский А.Д.
SU119114A1
CN 104007133 A, 27.08.2014
CN 103134588 A, 05.06.2013
КАТАЛИЗАТОР, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ СЕЛЕКТИВНОГО ГИДРИРОВАНИЯ НЕНАСЫЩЕННЫХ СОЕДИНЕНИЙ В ПОТОКАХ УГЛЕВОДОРОДОВ 1999
  • Майер Геральд
  • Шваб Эккехард
  • Хессе Михаель
  • Трюбенбах Петер
  • Мюллер Ханс-Йоахим
RU2223145C2

RU 2 581 728 C1

Авторы

Кузин Александр Геннадьевич

Савенко Олег Михайлович

Даты

2016-04-20Публикация

2015-02-16Подача