ПОВЕРХНОСТНЫЙ ФУНДАМЕНТ СООРУЖЕНИЯ, ОБЕСПЕЧИВАЮЩИЙ СОХРАНЕНИЕ ГРУНТОВ ОСНОВАНИЯ В МЕРЗЛОМ СОСТОЯНИИ С ОДНОВРЕМЕННЫМ ОБОГРЕВОМ СООРУЖЕНИЯ Российский патент 2016 года по МПК E02D3/115 

Описание патента на изобретение RU2583025C1

Изобретение относится к строительству на многолетнемерзлых грунтах с искусственным охлаждением грунтов основания и одновременным обогревом сооружения с помощью теплового насоса.

Проблема вызвана тем, что все сооружения на многолетнемерзлых грунтах имеют естественные системы охлаждения, использующие низкие отрицательные температуры атмосферного воздуха в зимнее время. Это ставит их в зависимость от климата. Наметившееся в настоящее время глобальное потепление климата представляет большую угрозу для устойчивости этих сооружений в связи с растеплением основания. По этой причине некоторые сооружения уже сегодня испытывают деформации, которые в будущем будут только увеличиваться. Все это побудило к созданию устройств и способов, ослабляющих тепловое влияние климата на устойчивость сооружений на многолетнемерзлых грунтах.

Известно устройство для аккумуляции зимнего холода в основании сооружения (авторское свидетельство СССР №80476, кл. E02D 3/12, 1981). Устройство выполнено в виде камеры, внутри которой на ее нижней стенке с зазором относительно ее верхней стенки, снабженной теплоизоляцией, размещена оболочка, заполненная жидкостью, замерзающей при отрицательной температуре (антифризом), причем камера соединена с источником холода (наружным воздухом). В зимнее время излишки холода аккумулируются промерзающим антифризом, который расходуется летом для поддержания грунтов основания в мерзлом состоянии.

Недостатком известного устройства является следующее:

- конструкция полностью не исключает зависимость устойчивости сооружения от климата;

- стенки оболочки и, соответственно, камеры испытывают большое внутреннее давление от промерзающего антифриза, что требует их большой прочности, соответственно, материалоемкости.

Наиболее близким техническим решением являются способ и устройство для круглогодичных охлаждения, замораживания грунта основания фундамента и теплоснабжения сооружения на вечномерзлом грунте в условиях криолитозоны (патент РФ №2519012, кл. E02D 3/115, 2014). Указанное изобретение включает бурение скважин и круглогодичное охлаждение и замораживание грунта основания фундамента с одновременным и круглогодичным частичным теплоснабжением сооружения за счет теплоты охлаждаемого и замораживаемого грунта основания фундамента и прилегающих к нему слоев грунта, при этом образуют первичный контур с низкотемпературным теплоносителем теплового насоса, рабочее тело теплового насоса имеет температуру кипения ниже на 10-30°С минимальной температуры теплоносителя первичного контура, тепловой насос располагают внутри сооружения и осуществляют теплоснабжение с коэффициентом преобразования больше единицы 1-3, причем теплоноситель первичного контура теплового насоса имеет температуру замерзания ниже минимальной температуры окружающего воздуха места сооружения до -60°С, а температура испарения рабочего тела вторичного контура выше нижнего предела его рабочего диапазона температур до -75°С, при этом термоскважину устанавливают в массиве основания сооружения с несущими сваями по периферии или, будучи разделенной на менее мощные, термоскважины устанавливают по его периферии, выполняя дополнительно несущую функцию сваи, причем теплоноситель разделенных термоскважин подают по теплоизолированным теплопроводам к общему теплообменнику первичного контура теплового насоса или к нескольким тепловым насосам, установленным в различных помещениях сооружения.

Эта конструкция имеет ряд существенных недостатков:

- температура грунта на контакте с термоскважиной становится значительно ниже температуры грунта в естественных условиях, что может привести к морозному растрескиванию грунта и деформации сооружения;

- расположенные в основании сооружения термоскважины не подлежат ремонту, что делает конструкцию в целом неремонтопригодной, а следовательно, и недостаточно надежной;

- конструкция предусматривает полное ее изготовление на стройплощадке, что в условиях сурового климата является нежелательным и нарушает основное требование к конструкциям на Севере - максимальная сборность.

Задачей, решаемой изобретением, является создание надежной ремонтопригодной конструкции фундамента полной заводской готовности, обеспечивающей сохранение грунтов основания в мерзлом состоянии вне зависимости от изменения климата и при этом не вызывающей чрезмерного охлаждения многолетнемерзлых грунтов, которое может привести к их растрескиванию.

Указанная задача решается заявляемым устройством, которое представляет собой коробчатую железобетонную плиту, состоящую из верхнего и нижнего короба, разделенных теплоизолятором. В верхнем коробе помещается змеевик греющего контура (водяной контур) теплового насоса, в нижнем - охлаждающего (рассольный контур). Такой фундамент одновременно обеспечивает обогрев полов здания верхним змеевиком за счет низкопотенциального тепла, отбираемого из грунта нижним змеевиком теплового насоса, при этом отбор тепла рассчитывается таким образом, чтобы охлаждение грунтов основания не было чрезмерным и не приводило к морозному растрескиванию грунтов. Фундамент состоит из отдельных модулей полной заводской готовности, которые на стройплощадке собираются в единую конструкцию, устанавливаемую на подсыпку из крупноскелетного грунта, не подверженного деформациям при промерзании-оттаивании.

Расчет такого фундамента осуществляется по следующей схеме.

Вначале по формулам (1), (2) определяется толщина подсыпки hd, препятствующей чрезмерному охлаждению основания:

где λth,d, Lν,d - коэффициент теплопроводности и удельная теплота промерзания-оттаивания подсыпки; Tin - температура воздуха в сооружении; ty, twarm - продолжительность года и отопительного сезона; Rflo, Rins - термическое сопротивление пола сооружения и теплоизоляции в составе поверхностного фундамента; αin - коэффициент теплообмена между воздухом в сооружении и поверхностью пола.

Далее по формуле (3) находится номинальная тепловая мощность теплового насоса Q0 и затем по формулам (4) и (5) соответствующие этой мощности расходы рассола Vbr в его охлаждающем контуре и воды Vw в его греющем контуре:

где η - коэффициент запаса принимается равным 1,2-1,5; SM - площадь фундаментного модуля; n - число модулей в поверхностном фундаменте; Cs,Cw - объемная теплоемкость рассола и воды; ΔT - разность температуры рассола на входе и выходе в охлаждающем контуре или воды в греющем контуре теплового насоса, обычно принимается 3-5°С.

По параметрам Q0, Vbr, Vw подбирается тепловой насос.

На фиг. 1 показан разрез фундаментного модуля, на фиг. 2 - сборный чертеж плана поверхностного фундамента из фундаментных модулей.

Фундаментный модуль состоит из нижнего железобетонного короба 1, внутри которого размещен змеевик охлаждающего контура теплового насоса 2. Нижний короб 1 имеет съемную железобетонную крышку 3, поверх которой размещен верхний железобетонный короб 4 со змеевиком греющего контура теплового насоса 5. Последний положен на слой теплоизоляции 6, которая размещена на крышке нижнего короба 3. Для ремонтопригодности конструкции дно верхнего короба 4 делается съемным, а нагрузка от сооружения (кроме нагрузки на пол) передается через боковые ребра коробов 1 и 4. Фундаментный модуль устанавливается на подсыпку из крупноскелетного грунта 7. Фундаментные модули 8, в совокупности образующие поверхностный фундамент, подсоединяются параллельно к теплоизолированному коллектору 9 охлаждающего контура и теплоизолированному коллектору 10 греющего контура теплового насоса 11.

Работает устройство следующим образом.

Поверхностный фундамент из фундаментных блоков 8 собирается на подсыпке 7 в конце зимы, когда грунты основания, в том числе подсыпка 7, находятся в мерзлом состоянии, подключается к тепловому насосу 11 через коллекторы 9 и 10, и тепловой насос 11 включается в работу, которая продолжается до конца отопительного периода. В это время происходит обогрев пола сооружения змеевиком 5 и охлаждение мерзлого основания змеевиком 2, однако охлаждение основания за короткий отрезок времени (с конца зимы до конца отопительного периода) не может привести к морозному растрескиванию грунтов. С окончанием отопительного периода тепловой насос 11 отключается и под действием тепла от сооружения происходит оттаивание подсыпки 7, которое распространяется на всю мощность подсыпки 7 только к началу нового отопительного сезона, когда включается тепловой насос 11 и начинается промерзание оттаявшей подсыпки за счет работы змеевика 2 и обогрев полов сооружения за счет работы змеевика 5. Мощность теплового насоса 11 подобрана таким образом, чтобы к концу отопительного периода подсыпка 7 была полностью проморожена и в основание не поступил импульс холода, который мог бы вызвать растрескивание грунтов. Далее до конца периода эксплуатации сооружения годовые циклы промерзания-оттаивания подсыпки повторяются.

В заявляемом устройстве простота конструкции сочетается с использованием серийных промышленных образцов тепловых насосов. В случае отказа конструкция устройства позволяет производить извлечение и замену всех ее элементов за исключением железобетонных коробов. Эти качества заявляемого устройства свидетельствуют о его надежности.

Похожие патенты RU2583025C1

название год авторы номер документа
Поверхностный фундамент для одноэтажного здания на многолетнемерзлых грунтах 2017
  • Хрусталев Лев Николаевич
  • Хилимонюк Ванда Здиславовна
RU2645035C1
Поверхностный фундамент здания, обеспечивающий сохранение грунтов основания в мерзлом состоянии с одновременным обогревом здания 2017
  • Хрусталев Лев Николаевич
  • Хилимонюк Ванда Здиславовна
  • Гунар Алексей Юрьевич
  • Каманин Дмитрий Владимирович
  • Десятов Андрей Викторович
RU2684941C2
СПОСОБ И УСТРОЙСТВО ДЛЯ КРУГЛОГОДИЧНЫХ ОХЛАЖДЕНИЯ, ЗАМОРАЖИВАНИЯ ГРУНТА ОСНОВАНИЯ ФУНДАМЕНТА И ТЕПЛОСНАБЖЕНИЯ СООРУЖЕНИЯ НА ВЕЧНОМЕРЗЛОМ ГРУНТЕ В УСЛОВИЯХ КРИОЛИТОЗОНЫ 2012
  • Трушевский Станислав Николаевич
  • Стребков Дмитрий Семенович
RU2519012C2
СПОСОБ ПОВЫШЕНИЯ ПРОЧНОСТИ ПЛАСТИЧНО-МЕРЗЛЫХ ГРУНТОВ И ФУНДАМЕНТ ДЛЯ РЕАЛИЗАЦИИ СПОСОБА 2009
  • Мельников Владимир Павлович
  • Горелик Яков Борисович
  • Горелик Роман Яковлевич
RU2422589C1
СПОСОБ ПОВЫШЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ АЭРОДРОМНЫХ ПОКРЫТИЙ В УСЛОВИЯХ ЗАСОЛЕННЫХ МНОГОЛЕТНЕМЕРЗЛЫХ ГРУНТОВ 2021
  • Пащенко Федор Александрович
  • Харьков Никита Сергеевич
  • Гарбузов Валерий Викторович
  • Ефименко Михаил Николаевич
RU2763640C1
Способ восстановления зданий с вентилируемым подпольем после растепления грунтов основания 2021
  • Власов Александр Николаевич
  • Королев Михаил Владимирович
  • Прямицкий Антон Валерьевич
RU2771359C1
Комбинированный способ устройства свайных фундаментов в многолетнемерзлых грунтах 2019
  • Местников Владимир Владимирович
  • Местникова Ия Владимировна
  • Местников Владимир Владимирович
RU2712976C1
ЗЕМЛЯНОЕ СООРУЖЕНИЕ НА МНОГОЛЕТНЕМЕРЗЛЫХ ГРУНТАХ И СПОСОБ ЕГО ВОЗВЕДЕНИЯ С УКРЕПЛЕНИЕМ ОСНОВАНИЯ В РАЙОНАХ РАСПРОСТРАНЕНИЯ ВЕЧНОЙ МЕРЗЛОТЫ 2010
  • Бедрин Евгений Андреевич
  • Завьялов Александр Михайлович
  • Попов Виктор Панфилович
  • Лонский Владимир Николаевич
RU2443828C1
СПОСОБ ЗАЩИТЫ НЕСУЩЕЙ ОПОРНОЙ КОНСТРУКЦИИ НАДЗЕМНОГО МАГИСТРАЛЬНОГО ТРУБОПРОВОДА ОТ ВОЗДЕЙСТВИЙ СИЛ МОРОЗНОГО ПУЧЕНИЯ ГРУНТА 2022
  • Шаммазов Ильдар Айратович
  • Сидоркин Дмитрий Иванович
  • Батыров Артур Магомедович
RU2785329C1
ВАКУУМНАЯ СТРОИТЕЛЬНАЯ КОНСТРУКЦИЯ ЗДАНИЯ И СООРУЖЕНИЯ ИЗ НЕЕ ПРЕИМУЩЕСТВЕННО ДЛЯ ЗОН ВЕЧНОЙ МЕРЗЛОТЫ И ЗЕМЛЕТРЯСЕНИЙ 1996
  • Криворотов Александр Семенович
RU2110648C1

Иллюстрации к изобретению RU 2 583 025 C1

Реферат патента 2016 года ПОВЕРХНОСТНЫЙ ФУНДАМЕНТ СООРУЖЕНИЯ, ОБЕСПЕЧИВАЮЩИЙ СОХРАНЕНИЕ ГРУНТОВ ОСНОВАНИЯ В МЕРЗЛОМ СОСТОЯНИИ С ОДНОВРЕМЕННЫМ ОБОГРЕВОМ СООРУЖЕНИЯ

Изобретение относится к области строительства на многолетнемерзлых грунтах с искусственным охлаждением грунтов основания и одновременным обогревом сооружения с помощью теплового насоса. В поверхностном фундаменте сооружения, обеспечивающем сохранение грунтов основания в мерзлом состоянии с одновременным обогревом сооружения с помощью теплового насоса, согласно изобретению охлаждающий и греющий контуры теплового насоса расположены в самом фундаменте и разделены теплоизоляцией. Технический результат состоит в обеспечении надежной ремонтопригодной конструкции фундамента полной заводской готовности, обеспечивающей сохранение грунтов основания в мерзлом состоянии вне зависимости от изменения климата. 2 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 583 025 C1

1. Поверхностный фундамент сооружения, обеспечивающий сохранение грунтов основания в мерзлом состоянии с одновременным обогревом сооружения с помощью теплового насоса, отличающийся тем, что охлаждающий и греющий контуры теплового насоса расположены в самом фундаменте и разделены теплоизоляцией.

2. Поверхностный фундамент сооружения, обеспечивающий сохранение грунтов основания в мерзлом состоянии с одновременным обогревом сооружения по п. 1, отличающийся тем, что имеет подсыпку из крупноскелетного грунта, предохраняющую основание от чрезмерного охлаждения и морозного растрескивания грунтов.

3. Поверхностный фундамент сооружения, обеспечивающий сохранение грунтов основания в мерзлом состоянии с одновременным обогревом сооружения по п. 1, отличающийся тем, что состоит из совокупности фундаментных модулей полной заводской готовности, которые подключаются к тепловому насосу параллельно.

Документы, цитированные в отчете о поиске Патент 2016 года RU2583025C1

СПОСОБ И УСТРОЙСТВО ДЛЯ КРУГЛОГОДИЧНЫХ ОХЛАЖДЕНИЯ, ЗАМОРАЖИВАНИЯ ГРУНТА ОСНОВАНИЯ ФУНДАМЕНТА И ТЕПЛОСНАБЖЕНИЯ СООРУЖЕНИЯ НА ВЕЧНОМЕРЗЛОМ ГРУНТЕ В УСЛОВИЯХ КРИОЛИТОЗОНЫ 2012
  • Трушевский Станислав Николаевич
  • Стребков Дмитрий Семенович
RU2519012C2
RU 2159308 C1, 20.11.2000
Прядильное веретено для двойной крутки 1936
  • Коротков М.А.
  • Мамлов М.А.
SU51636A1
СПОСОБ ЗАМЕДЛЕНИЯ ПРОЦЕССА СЕЗОННОГО ПРОМЕРЗАНИЯ 2006
  • Остробородов Сергей Васильевич
  • Пустовойт Григорий Петрович
  • Харивский Олег Любомирович
  • Хромышев Николай Константинович
  • Шевцов Константин Павлович
  • Лязгин Анатолий Леонидович
RU2318098C1
Способ расточки отверстий в часовых камнях и станок для осуществления способа 1949
  • Коен И.С.
SU84883A1
US 3788389 A, 29.01.1974.

RU 2 583 025 C1

Авторы

Хрусталев Лев Николаевич

Хилимонюк Ванда Здиславовна

Перльштейн Георгий Захарович

Каманин Дмитрий Владимирович

Даты

2016-04-27Публикация

2015-04-20Подача