УСТРОЙСТВО СЕЛЕКЦИИ СИГНАЛОВ ПО ЧАСТОТЕ Российский патент 2016 года по МПК G01R23/17 G02F1/33 G08C23/02 

Описание патента на изобретение RU2583128C1

Устройство относится к области обработки сигналов и предназначено для использования в радиоприемных системах.

Известно устройство селекции сигналов, построенное на основе электронных компонент. Устройство представляет собой набор параллельно включенных узкополосных радиочастотных усилителей, перекрывающих всю полосу селекции (В.А. Мартынов, Ю.И. Селихов. Панорамные приемники и анализаторы спектра. - М.: Сов. Радио, 1980, с. 206-225). Такое устройство позволяет разделить принимаемые сигналы в соответствии со значениями их частот.

К недостаткам такого устройства следует отнести большую массу и габариты при достаточно большом числе усилителей (~103 и более). Для снижения массы и габаритов устройства можно использовать акустооптоэлектронную (АОЭ) элементную базу.

Известно устройство селекции, построенное на акустооптоэлектронной элементной базе (см. В.Н. Парыгин, В.И. Балакший. Оптическая обработка информации. - Изд. Московского университета, 1987, с. 116-117). Устройство носит название анализатора спектра с когерентным детектированием. К недостатку устройства следует отнести сложность формирования гетеродинного (опорного) светового пучка при работе устройства селекции в широкой полосе частот, так как в этом случае необходимо формировать гетеродинный световой пучок для всех возможных частот принимаемого сигнала. Это увеличивает сложность и громоздкость устройства, а также существенно увеличивает световые потери на формирование гетеродинных пучков, вследствие чего повышаются требования к мощности используемого источника света.

Также известно устройство (см. С.В. Кулаков. Акустооптические устройства спектрального и корреляционного анализатора сигналов. - Ленинград: Наука, Ленинградское отделение, 1978, с. 55-63), которое содержит последовательно оптически соединенные источник света (лазер), коллиматор, первый акустооптический модулятор (АОМ) света, на электрический вход которого подается входной сигнал, проектирующую оптическую систему, второй АОМ света, на электрический вход которого подается сигнал в виде δ-импульса, интегрирующую линзу и фотодетектор.

На выходе такого устройства формируется корреляционная функция сигналов, подаваемых на первый и второй АОМ света. Поэтому если на электрический вход первого АОМ света подать входной сигнал и одновременно с этим на электрический вход второго АОМ света подать δ-импульс, то на выходе фотодетектора будет сформирован (восстановлен) выходной сигнал, являющийся копией входного.

Первый недостаток такого устройства заключается в том, что оно не может работать при неизвестном заранее времени прихода входного сигнала. Это связано с тем, что неизвестно, в какой момент необходимо формировать δ-импульс.

Второй недостаток такого устройства заключается в том, что использование δ-импульсов энергетически невыгодно, так как формально δ-импульс имеет бесконечно широкий спектр, и поэтому световой поток, соответствующий спектру δ-импульса, распределяется по всей полосе пространственных частот, в которой работает устройство, и на каждое значение пространственной частоты приходится, таким образом, очень малая световая энергия. Поэтому при приеме узкополосных сигналов, которым соответствует узкий спектр пространственных частот, уровень выходного сигнала будет весьма низок.

Указанных недостатков лишено устройство (см. патент РФ 2498413, C1, МПК G08C 23/02, G02F 1/33, опубл. 10.11.2013, бюл. №31). Это устройство содержит последовательно оптически соединенные лазер, коллиматор, первый АОМ света, электрический вход которого является входом устройства, первую интегрирующую линзу проектирующей оптической системы, пространственный фильтр, вторую интегрирующую линзу проектирующей оптической системы, второй АОМ света, электрический вход которого подключен ко входу устройства, интегрирующую линзу, второй пространственный фильтр и линейку фотодиодов, причем второй АОМ света оптически соединен с интегрирующей линзой через второй порядок дифракции, а скорость распространения акустической волны во втором АОМ света выбрана вдвое больше скорости распространения акустической волны в первом АОМ света.

Недостатком данного устройства является искажение выходных сигналов относительно входных. Искажения возникают вследствие нелинейного режима дифракции светового потока на акустическом сигнале. В линейном режиме дифракции присутствуют световые максимумы, соответствующие нулевому и первому порядкам дифракции. Если же при дифракции появляются максимумы, соответствующие вторым и более высоким порядкам, то это свидетельствует о наличии нелинейного режима дифракции (см., например, Е.Р. Мустель, В.Н. Парыгин. Методы модуляции и сканирования света. - М.: Наука, 1970, с. 200-213). В прототипе присутствуют световые максимумы, соответствующие не только 0-му и +1-му, но и +2-му порядку дифракции, что приводит к нелинейному режиму работы устройства и искажениям выходных сигналов относительно входных.

Техническим результатом настоящего изобретения является снижение искажений выходных сигналов.

Указанный технический результат достигается тем, что в устройство, содержащее последовательно оптически соединенные лазер, коллиматор, АОМ света, электрический вход которого является входом устройства, первую интегрирующую линзу, пространственный фильтр, а также вторую интегрирующую линзу и линейку фотодиодов, между пространственным фильтром и второй интегрирующей линзой в ±1-х порядках дифракции установлены оптические транспаранты с функцией пропускания

,

где K - размерный постоянный коэффициент;

х, у - координаты Фурье-плоскости интегрирующей линзы,

а в 0-м порядке дифракции четвертьволновая пластинка.

На фигуре представлена схема предлагаемого устройства.

Предлагаемое устройство содержит лазер 1, коллиматор 2, АОМ света 3, интегрирующие линзы 4.1 и 4.2, пространственный фильтр 5, фазовые транспаранты 6.1 и 6.2, четвертьволновую пластинку 7 и линейку фотодиодов 8.

Устройство работает следующим образом. С помощью лазера 1 и коллиматора 2 формируется монохроматический световой поток с плоским фронтом, который падает на АОМ света 3, работающий в режиме Рамана-Ната. На электрический вход АОМ света 3 подается входной сигнал, возбуждающий в модуляторе бегущую акустическую волну. На выходе модулятора формируется бегущая световая волна, представляющая собой бегущее фазовое световое изображение акустического сигнала. Интегрирующая линза 4.1 производит пространственное преобразование Фурье светового поля на выходе АОМ света 3. Пространственный фильтр 5 отфильтровывает все порядки дифракции, кроме ±1-х и 0-го. Фазовые транспаранты 6.1 и 6.2 преобразуют световые пучки, распространяющиеся по ±1-м порядкам дифракции. Четвертьволновая пластинка 7, помещенная в 0-й порядок дифракции, преобразует фазовый контраст в контраст интенсивности. Восстановление входного сигнала в соответствии со значением его частоты осуществляется с помощью линейки фотодиодов 8.

Если на входе устройства присутствует несколько сигналов на разных частотах, то все они будут разделяться в пространстве и каждый сигнал будет формироваться на выходе соответствующего фотодиода линейки.

Использование в устройстве световых максимумов 0-го и ±1-го порядков дифракции позволяет обеспечить линейный режим дифракции и тем самым снизить искажения выходных сигналов, возникавших в прототипе из-за нелинейного режима дифракции.

Похожие патенты RU2583128C1

название год авторы номер документа
УСТРОЙСТВО СЕЛЕКЦИИ СИГНАЛОВ ПО ЧАСТОТЕ 2012
  • Катков Борис Григорьевич
  • Попов Василий Георгиевич
RU2498413C1
СПОСОБ СЕЛЕКЦИИ СИГНАЛОВ ПО ЧАСТОТЕ 2015
  • Катков Борис Григорьевич
  • Сотышев Дмитрий Борисович
RU2579974C1
СПОСОБ СЕЛЕКЦИИ СИГНАЛОВ ПО ЧАСТОТЕ 2012
  • Катков Борис Григорьевич
  • Попов Василий Георгиевич
RU2498412C1
ВЫСОКОТОЧНЫЙ АКУСТООПТИЧЕСКИЙ ИЗМЕРИТЕЛЬ СКОРОСТИ ПЕРЕСТРОЙКИ ЧАСТОТНО-МОДУЛИРОВАННЫХ СИГНАЛОВ 2001
  • Роздобудько В.В.
RU2182337C1
АКУСТООПТИЧЕСКИЙ ПРИЕМНИК-ЧАСТОТОМЕР 2000
  • Роздобудько В.В.
RU2178181C2
АКУСТООПТИЧЕСКИЙ СПЕКТРОАНАЛИЗАТОР 2012
  • Роздобудько Виктор Власович
  • Волик Денис Петрович
  • Коротенко Виктория Андреевна
RU2512617C2
АКУСТООПТИЧЕСКИЙ ПРИЕМНИК-ЧАСТОТОМЕР 1999
  • Роздобудько В.В.
  • Крутчинский Г.С.
  • Крикотин С.В.
RU2153680C1
АКУСТООПТИЧЕСКИЙ ПРИЕМНИК-ЧАСТОТОМЕР 1998
  • Роздобудько В.В.
  • Малышев В.А.
  • Червяков Г.Г.
RU2142140C1
Акустооптический спектроанализатор радиосигналов 1984
  • Гуревич Вероника Зальмановна
  • Морозов Сергей Викторович
  • Сергеенко Татьяна Николаевна
  • Чернов Борис Константинович
  • Яковлев Валерий Иванович
SU1216741A1
ВЫСОКОТОЧНЫЙ АКУСТООПТИЧЕСКИЙ ПРИЕМНИК-ЧАСТОТОМЕР 1999
  • Роздобудько В.В.
  • Крутчинский Г.С.
  • Крикотин С.В.
RU2149510C1

Реферат патента 2016 года УСТРОЙСТВО СЕЛЕКЦИИ СИГНАЛОВ ПО ЧАСТОТЕ

Устройство селекции сигналов по частоте содержит последовательно оптически соединенные лазер, коллиматор, акустооптический модулятор (АОМ) света, первую интегрирующую линзу и пространственный фильтр, а также вторую интегрирующую линзу и линейку фотодиодов. Электрический вход модулятора является входом устройства. При этом между пространственным фильтром и второй интегрирующей линзой в ±1-х порядках дифракции установлены оптические транспаранты. Технический результат заключается в снижении искажений выходных сигналов. 1 ил.

Формула изобретения RU 2 583 128 C1

Устройство селекции сигналов по частоте, содержащее последовательно оптически соединенные лазер, коллиматор, акустооптический модулятор света, электрический вход которого является входом устройства, первую интегрирующую линзу и пространственный фильтр, а также вторую интегрирующую линзу и линейку фотодиодов, отличающееся тем, что между пространственным фильтром и второй интегрирующей линзой в ±1-х порядках дифракции установлены оптические транспаранты с функцией пропускания

где K - размерный постоянный коэффициент;
х, y - координаты Фурье-плоскости интегрирующей линзы,
а в 0-м порядке дифракции четвертьволновая пластинка.

Документы, цитированные в отчете о поиске Патент 2016 года RU2583128C1

Устройство для сопряжения ЭВМ с внешним устройством 1987
  • Скрипин Сергей Викторович
  • Загуменнов Сергей Григорьевич
SU1515165A1
СПОСОБ ПОИСКА НЕРВОВ И НЕРВНЫХ СПЛЕТЕНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1994
  • Акулов М.С.
  • Загреков В.И.
RU2107459C1
US 4699466 A1 13.10.1987
СПОСОБ СПЕКТРАЛЬНОГО АНАЛИЗА ЭЛЕКТРИЧЕСКОГО СИГНАЛА 2010
  • Самойленко Марина Витальевна
RU2431853C1

RU 2 583 128 C1

Авторы

Катков Борис Григорьевич

Сотышев Дмитрий Борисович

Даты

2016-05-10Публикация

2015-03-11Подача