МИКРОКОНТРОЛЛЕРНЫЙ ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ ДЛЯ ФОТОПЛЕТИЗМОГРАФИЧЕСКОГО ДАТЧИКА ПУЛЬСА Российский патент 2016 года по МПК A61B5/295 

Описание патента на изобретение RU2583148C1

Область техники, к которой относится изобретение

Изобретение относится к области медицины и может быть использовано в медицинской практике для диагностики частоты пульса пациента.

Уровень техники

Известно устройство измерителя пульса, основу которого составляет оптоэлектронный преобразователь, состоящий из ИК-светодиода и фотодиода. Данное устройство содержит следующие элементы: оптоэлектронный преобразователь, два усилителя, фильтр низкой частоты, триггер Шмидта, дифференцирующую RC-цепь, три ждущих одновибратора, две логические схемы И-НЕ, генератор измерительной частоты, два RS-триггера, электронный ключ, счетчик частоты, индикатор, две кнопки управления (см. Ефремов В.Н. Нискевич М.И. Измеритель пульса / В помощь радиолюбителю: Сборник. Вып. 90 // Сост. Н.Ф. Назаров. - М.: ДОСААФ, 1985. - С. 27, 29; рис. 1).

Недостаток известного решения - низкая точность измерения, обусловленная погрешностью, вносимой относительно большим количеством дискретных элементов, параметры которых изменяются, например, под действием температуры.

Известно устройство для измерения частоты пульса, содержащее: оптоэлектронный преобразователь, два усилителя, фильтр низкой частоты, схему автоматической регулировки усиления, триггер Шмитта, генератор измерительных импульсов, электронный ключ, логическую схему И-НЕ, формирователь команд управления, счетчик частоты, регистр памяти, индикатор и кнопку пуска (см. патент РФ №2118119, кл. А61В).

Недостаток известного решения - низкая точность измерения, обусловленная погрешностью, вносимой относительно большим количеством дискретных элементов, параметры которых изменяются, например, под действием температуры.

Наиболее близким по технической сущности к заявляемому техническому решению и принятое авторами за прототип является микроконтроллерный фотоплетизмографический датчик пульса, содержащий микроконтроллер (МК), первый и второй резисторы, светодиод, фотоприемник (фотодиод) и RC-фильтр, первые выводы первого и второго резисторов подключены к источнику питания МК, катод светодиода и первый вывод фотоприемника подключены к минусу источника питания МК, второй вывод первого резистора подключен к аноду светодиода, второй вывод второго резистора и второй вывод фотоприемника подключены к первому входу аналогового компаратора (АК) МК, вход RC-фильтра подключен к выходу широтно-импульсного модулятора (ШИМ), встроенного в МК, выход RC-фильтра подключен ко второму входу АК МК (Вострухин А.В. Микроконтроллерный фотоплетизмографический датчик пульса / А.В. Вострухин, Е.Д. Лоскутов // Развитие инновационных направлений в образовании, экономике, технике и технологиях: Межвузовская научно-практическая конференция. 17-18 мая 2012 года: сборник статей / под общ. науч. ред. д.т.н., проф. В.Е. Жидкова. - Ставрополь: Ставролит; СТИС, 2012. - Часть II. - 260 с. (http://www.stis.su/stv_files/downloads/science/mnpk_17_18_may_2012_part2.pdf))

Недостаток известного решения - низкая точность измерения, обусловленная использованием делителя напряжения в качестве измерительной цепи, образованной вторым резистором и фотоприемником. Известно, что данная измерительная цепь обладает низкой точностью измерения по сравнению с мостовыми измерительными цепями (Дж. Фрайден. Современные датчики. Справочник Москва.: Техносфера, 2006. - 592 с.).

Раскрытие изобретения

Технический результат, который может быть достигнут с помощью предлагаемого изобретения, сводится к повышению точности измерения.

Технический результат достигается тем, что в МИП для фотоплетизмографического датчика пульса, содержащий МК, светодиод, фотоприемник, RC-фильтр, первый и второй резисторы, причем первый вывод первого резистора подключены к аноду светодиода, первый вывод второго резистора подключен к первому выводу фотоприемника, катод светодиода и второй вывод фотоприемника подключены к минусу источника питания МК, второй вывод второго резистора подключен к плюсу источника питания МК, выход RC-фильтра подключен к первому входу АК МК, введены третий и четвертый резисторы, причем ко второму выводу первого резистора подключен выход ШИМ МК, первый вывод фотоприемника подключен к входу RC-фильтра, первые выводы третьего и четвертого резисторов подключены ко второму входу АК МК, второй вывод третьего резистора подключен к плюсу источника питания МК, второй вывод четвертого резистора подключен к минусу источника питания МК.

Краткое описание чертежей

На фиг. представлена структурная схема МИП для фотоплетизмографического датчика пульса.

Осуществление изобретения

МИП для фотоплетизмографического датчика пульса содержит (фиг.) МК 1, первый резистор (R1) 2, светодиод 3, второй резистор (R2) 4, фотоприемник (это может быть или фоторезистор, или фотодиод) 5, RC-фильтр 6, третий резистор (R3) 7 и четвертый резистор (R4) 8.

Первый вывод резистора 2 подключен к аноду светодиода 3, первый вывод резистора 4 подключен к первому выводу фотоприемника 5 и ко входу RC-фильтра 6, выход которого подключен к первому входу (к прямому входу) АК, встроенного в МК 1. Второй вывод резистора 2 подключен к выходу ШИМ, встроенного в МК 1. Первые выводы резисторов 7 и 8 подключены ко второму входу (к инверсному входу) АК МК 1. Вторые выводы резисторов 4 и 7 подключены к плюсу источника питания МК 1. Катод светодиода 3, второй вывод фотоприемника 5 и второй вывод резистора 8 подключены к минусу источника питания МК 1.

МИП для фотоплетизмографического датчика пульса работает следующим образом.

На второй вход АК подается опорное напряжение, формируемое с помощью резистивного делителя, состоящего из резисторов 7 и 8. Если сопротивления этих резисторов равны, тогда опорное напряжение равное половине напряжения источника питания МК 1. Когда между светодиодом 3 и фотоприемником 5 отсутствует биоткань, коэффициент заполнения ШИМ равен 0,5. Импульсный световой поток, формируемый светодиодом 3 под действием протекающего через него импульсного тока, формируемого ШИМ, создает на фотоприемнике 5 падение напряжения, которое также является пульсирующим. Это напряжение приложено ко входу RC-фильтра 6. На выходе RC-фильтра 6 формируется сглаженное напряжение, близкое по значению опорному напряжению.

Допустим, световой поток падающий на фотоприемник 5 уменьшился по причине снижения светопроницаемости биоткани, находящейся между светодиодом 3 и фотоприемником 5, например, возросло давление кровяного потока в кровеносных сосудах этой биоткани. В этом случае сопротивление фотоприемника 5 возрастет, что приведет к возрастанию среднего напряжения на входе RC-фильтра 6 и, следовательно, на первом входе АК МК 1. На выходе АК МК 1 будет сформирована логическая 1. ШИМ под управлением МК 1 увеличит коэффициент заполнения, что приведет в свою очередь к возрастанию среднего тока, протекающего через светодиод 3, при этом световой поток, проходящий через биоткань, возрастет, сопротивление фотоприемника 5 уменьшится, а следовательно, уменьшится и напряжение на первом входе АК МК 1. Если напряжение на первом входе АК станет меньше опорного, то на выходе АК МК 1 будет сформирован логический 0. В этом случае ШИМ под управлением МК 1 уменьшит коэффициент заполнения, что в приведет к уменьшению светового потока, падающего на фотоприемник 5, при этом сопротивление фотоприемника возрастет, что приведет к возрастанию напряжения на первом входе АК МК 1 и, следовательно, к формированию логической 1 на его выходе АК МК 1 и т.д.

Таким образом, осуществляется непрерывное управление световым потоком, проходящим через биоткань и падающим на фотоприемник 5. МК 1 будет поддерживать равенство напряжений на входах АК МК 1 путем изменения коэффициента заполнения ШИМ. В данном случае осуществляется автоматическое уравновешивание мостовой схемы, состоящей из резисторов 4, 7, 8 и фотоприемника. Известно, что уравновешиваемые мосты позволяют получить более высокую точность измерения по сравнению с неуравновешиваемыми мостами.

Изменение светопроницаемости биоткани будет приводить к пропорциональному изменению коэффициента заполнения ШИМ, который в свою очередь пропорционален двоичному коду, загружаемому МК 1 в специальный регистр (регистр сравнения) ШИМ. Таким образом, двоичный код ШИМ будет изменятся в соответствии с изменением светопроницаемости биоткани находящейся между светодиодом 3 и фотоприемником 5. Светопроницаемость биоткани изменяется в зависимости от давления крови в кровеносных сосудах, находящихся в биоткани. Давление крови в кровеносных сосудах в свою очередь зависит от фазы работы сердца. Таким образом, изменяющийся непрерывно двоичный код ШИМ МК 1 есть результат измерения изменений пульсовой волны, формируемой работой сердца.

Результат измерения изменений пульсовой волны может быть обработан непосредственно в МК 1 с целью определения частоты пульса, значение которой может быть выведено в десятичной форме, например, на цифровой индикатор (цифровой индикатор на фиг. 1 не показан).

Результаты непрерывных измерений пульсовой волны могут передаваться МК 1 в оперативное запоминающее устройство (ОЗУ) (ОЗУ на фиг. 1 не показано) для их последующего анализа на компьютере путем считывания информации из ОЗУ в компьютер.

Результаты непрерывных измерений пульсовой волны могут передаваться МК 1 в реальном масштабе времени с использованием стандартных последовательных интерфейсов, в компьютер (компьютер на фиг. 1 не показан) для их оперативного анализа и сохранения.

Предлагаемое изобретение по сравнению с прототипом и другими известными решениями имеет преимущество - повышена точность измерения путем использования уравновешивания измерительного моста, образованного резисторами 4, 7, 8 и фотоприемником 5.

Похожие патенты RU2583148C1

название год авторы номер документа
Микроконтроллерный датчик пульса с передачей информации по радиоканалу 2017
  • Лоскутов Евгений Данилович
  • Вострухин Александр Витальевич
  • Гривенная Наталья Владимировна
RU2646131C1
МИКРОКОНТРОЛЛЕРНЫЙ ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ СОПРОТИВЛЕНИЯ С УПРАВЛЯЕМОЙ ЧУВСТВИТЕЛЬНОСТЬЮ 2012
  • Вострухин Александр Витальевич
  • Лоскутов Евгений Данилович
RU2491558C1
МИКРОКОНТРОЛЛЕРНЫЙ ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ С УРАВНОВЕШИВАНИЕМ РЕЗИСТИВНОГО МОСТА 2012
  • Вострухин Александр Витальевич
RU2506599C1
МИКРОКОНТРОЛЛЕРНЫЙ АЦП С ИСПОЛЬЗОВАНИЕМ ПЕРЕХОДНОГО ПРОЦЕССА В RC-ЦЕПИ 2012
  • Вострухин Александр Витальевич
  • Вахтина Елена Артуровна
RU2523208C1
МИКРОКОНТРОЛЛЕРНЫЙ ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ С УПРАВЛЯЕМЫМ ПИТАНИЕМ РЕЗИСТИВНЫХ ИЗМЕРИТЕЛЬНЫХ ЦЕПЕЙ МЕТОДОМ ШИРОТНО-ИМПУЛЬСНОЙ МОДУЛЯЦИИ 2014
  • Вострухин Александр Витальевич
  • Вахтина Елена Артуровна
RU2563315C1
МИКРОКОНТРОЛЛЕРНЫЙ ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ С УРАВНОВЕШИВАНИЕМ РЕЗИСТИВНОГО МОСТА УИТСТОНА МЕТОДОМ ШИРОТНО-ИМПУЛЬСНОЙ МОДУЛЯЦИИ 2012
  • Вострухин Александр Витальевич
  • Вахтина Елена Артуровна
RU2515309C1
МИКРОКОНТРОЛЛЕРНЫЙ ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ ЕМКОСТИ И СОПРОТИВЛЕНИЯ В ДВОИЧНЫЙ КОД 2009
  • Лоскутов Евгений Данилович
  • Вострухин Александр Витальевич
  • Ядыкин Виктор Семенович
  • Ерина Марина Александровна
  • Горяинов Михаил Фёдорович
RU2391677C1
Микроконтроллерный измерительный преобразователь сопротивления резисторных датчиков в двоичный код с функцией самодиагностики 2018
  • Вострухин Александр Витальевич
  • Мастепаненко Максим Алексеевич
  • Вахтина Елена Артуровна
RU2690517C1
Микроконтроллерное устройство измерения метеофакторов и вычисления эффективной температуры для цифровых систем управления микроклиматом 2022
  • Вострухин Александр Витальевич
  • Мастепаненко Максим Алексеевич
  • Вахтина Елена Артуровна
  • Воротников Игорь Николаевич
RU2799970C1
МИКРОКОНТРОЛЛЕРНЫЙ ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ СОПРОТИВЛЕНИЯ В ДВОИЧНЫЙ КОД 2010
  • Вострухин Александр Витальевич
  • Ядыкин Виктор Семёнович
  • Хабаров Алексей Николаевич
  • Пташкин Павел Юрьевич
RU2444020C1

Иллюстрации к изобретению RU 2 583 148 C1

Реферат патента 2016 года МИКРОКОНТРОЛЛЕРНЫЙ ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ ДЛЯ ФОТОПЛЕТИЗМОГРАФИЧЕСКОГО ДАТЧИКА ПУЛЬСА

Изобретение относится к области медицины и может быть использовано для диагностики частоты пульса пациента. Микроконтроллерный измерительный преобразователь для фотоплетизмографического датчика пульса содержит микроконтроллер, светодиод, фотоприемник, RC-фильтр, первый и второй резисторы. Первый вывод первого резистора подключен к аноду светодиода. Первый вывод второго резистора подключен к первому выводу фотоприемника. Катод светодиода и второй вывод фотоприемника подключены к минусу источника питания микроконтроллера. Второй вывод второго резистора подключен к плюсу источника питания микроконтроллера. Выход RC-фильтра подключен к первому входу аналогового компаратора микроконтроллера. Микроконтроллерный измерительный преобразователь также содержит третий и четвертый резисторы. Ко второму выводу первого резистора подключен выход широтно-импульсного модулятора микроконтроллера. Первый вывод фотоприемника подключен к входу RC-фильтра. Первые выводы третьего и четвертого резисторов подключены ко второму входу аналогового компаратора микроконтроллера. Второй вывод третьего резистора подключен к плюсу источника питания микроконтроллера. Второй вывод четвертого резистора подключен к минусу источника питания микроконтроллера. Достигается повышение точности измерения. 1 ил.

Формула изобретения RU 2 583 148 C1

Микроконтроллерный измерительный преобразователь для фотоплетизмографического датчика пульса, содержащий микроконтроллер, светодиод, фотоприемник, RC-фильтр, первый и второй резисторы, причем первый вывод первого резистора подключен к аноду светодиода, первый вывод второго резистора подключен к первому выводу фотоприемника, катод светодиода и второй вывод фотоприемника подключены к минусу источника питания микроконтроллера, второй вывод второго резистора подключен к плюсу источника питания микроконтроллера, выход RC-фильтра подключен к первому входу аналогового компаратора микроконтроллера, отличающееся тем, что в него введены третий и четвертый резисторы, причем ко второму выводу первого резистора подключен выход широтно-импульсного модулятора микроконтроллера, первый вывод фотоприемника подключен к входу RC-фильтра, первые выводы третьего и четвертого резисторов подключены ко второму входу аналогового компаратора микроконтроллера, второй вывод третьего резистора подключен к плюсу источника питания микроконтроллера, второй вывод четвертого резистора подключен к минусу источника питания микроконтроллера.

Документы, цитированные в отчете о поиске Патент 2016 года RU2583148C1

Фотоплетизмограф 1990
  • Бойко Сергей Григорьевич
  • Наумович Александр Семенович
  • Сидорик Павел Иосифович
  • Золотой Сергей Анатольевич
SU1821134A1
Способ получения высокодисперсного серебра 1946
  • Богданов И.Ф.
  • Голландская Е.И.
  • Папернов Л.З.
SU69393A1
Устройство для определения пульсового кровенаполнения 1990
  • Ксенофонтов Дмитрий Леонидович
  • Шибулкин Алик Петрович
  • Ронкин Михаил Аркадьевич
  • Сигалов Исай Львович
SU1754064A1
Устройство для определения долговечности изделий 1979
  • Куконин Владимир Егорович
  • Марецкий Рудольф Францевич
SU968681A1
US 4182314 A1, 08.01.1980
US 5078136 A1, 07.01.1992.

RU 2 583 148 C1

Авторы

Лоскутов Евгений Данилович

Вострухин Александр Витальевич

Фоменко Виталий Владимирович

Даты

2016-05-10Публикация

2014-12-11Подача