УНИВЕРСАЛЬНАЯ РАБОЧАЯ КАМЕРА ЭЙФЕЛЯ АЭРОГАЗОДИНАМИЧЕСКОЙ УСТАНОВКИ Российский патент 2016 года по МПК G01M9/00 

Описание патента на изобретение RU2585890C1

Изобретение относится к разделу экспериментальной аэрогазодинамики, а именно к конструкции рабочей части установки для испытаний струйных моделей кормы ракет, различных моделей летательных аппаратов, оснащенных органами управления, и ракетных двигателей.

Известен способ моделирования струйных течений, основанный на подаче газа высокой энергии в камеру Эйфеля и создании устойчивого циркуляционного движения газовой струи в упомянутой камере (Способ моделирования струйных течений, а.с. SU №425532 A1, G01M 9/00, 1972) и устройство для его осуществления, которое позволяет проводить испытания только моделей кормы ракет.

Известна рабочая часть аэродинамической трубы со свободной струей, а именно классическая камера Эйфеля с источником модельного газа (профилированным соплом) на входе и диффузором на выходе (А. Поуп, К. Гойн. Аэродинамические трубы больших скоростей. М.: Мир, 1968, рис 2.22, с. 129). Это техническое решение выбрано в качестве прототипа изобретения.

Технический результат, который обеспечивается изобретением, заключается в унификации известной рабочей камеры аэрогазодинамической установки типа камеры Эйфеля для испытания как моделей кормовых частей ракет с соплами ракетных двигателей, так и различных моделей летательных аппаратов при минимальных затратах на перекомпоновку и перенастройку элементов рабочей камеры.

Указанный технический результат достигается тем, что в рабочую камеру классической камеры Эйфеля аэрогазодинамической установки, содержащую рабочую камеру, установленный в отверстии на ее входе источник модельного газа в виде аэродинамического сопла, а на выходе камеры - диффузор, устанавливают перегородку. В перегородке выполнены отверстия. Одно отверстие выполнено соосно с соплом и имеет диаметр в 1,1÷1,3 раза больше выходного диаметра сопла, остальные выполнены на периферии перегородки и снабжены заглушками. Таким образом, рабочая камера разделяется перегородкой на основную и вспомогательную камеру. На входе в основную камеру выполнено отверстие для установки источника рабочего газа. Вспомогательная камера выполнена с возможностью установки узла крепления державки испытываемых моделей. Диффузор располагается на выходе из вспомогательной камеры.

На фиг. 1 представлена компоновка универсальной рабочей камеры Эйфеля для испытания моделей кормовых частей ракет с работающими ракетными двигателями. Позицией 1 обозначена основная часть рабочей камеры Эйфеля. В отверстие на ее входе установлена модель 2 кормовой части ракеты с соплами 3 от работающих двигателей, из которых в камеру 1 истекают струи продуктов горения (или имитирующие их газы) для проведения исследования их взаимодействия друг с другом или внешней средой (атмосферой). Вспомогательная камера 4 рабочей части отделена от передней перегородкой 5, в которой в центре по оси камеры выполнено отверстие 6 диаметром D, равным 1,1-1,3 Dc диаметра профилированного аэродинамического сопла 9 (см. фиг. 2). При этом открытые отверстия перфорации 7 перегородки обеспечивают моделирование внешней атмосферы путем поддержания в протяженной рабочей части заданного давления, практически одинакового в обеих камерах. Диффузор обозначен позицией 8. Стрелками показано направление движения потока рабочего газа.

На фиг. 2 изображен вариант компоновки универсальной рабочей камеры Эйфеля для испытаний различных моделей летательных аппаратов (ракет), в том числе с элементами управления или имитацией работающих двигателей. Здесь позиции 1, 4-8 соответствуют им же на рисунке 1, кроме позиций 2 и 3, вместо которых (модели кормы ракеты) установлено профилированное аэродинамическое сопло с диаметром Dc на выходе (срезе) 9, а в отверстия 7 на периферии перегородки установлены заглушки 10. Заглушки надежно фиксируются и герметично перекрывают отверстия. При этом в основную камеру помещена модель летательного аппарата 11 с помощью узла крепления державки 12.

На фиг. 3 изображена перфорированная перегородка 5 (вид в плане) с центральным отверстием 6 и периферийными отверстиями 7.

Для перекомпоновки и перенастройки варианта компоновки универсальной рабочей камеры Эйфеля для испытания моделей кормовых частей ракет на вариант компоновки для испытаний различных моделей летательных аппаратов (ракет) достаточно установить заглушки 10 в отверстия 7 и сопло 9 вместо модели кормовой части ракеты 2 с соплами 3.

На фиг. 4 приведены графики зависимости статических давлений на стенках камеры 13 и 14 при закрытых отверстиях 7 заслонками 10.

Здесь позиция 13 обозначает давление на стенке камеры 1, позиция 14 - соответственно камеры 4.

Здесь по оси абсцисс указано время рабочего цикла установки, а по оси ординат изменение давления на стенке первой и второй камеры (позиции 13 и 14 соответственно).

Как следует из представленных данных, значение статического давления в основной камере 1 более чем в 2 раза меньше значения статического давления в вспомогательной камере 4.

Низкий уровень давления в камере 1 позволяет быстро устанавливаться расчетному режиму течения в камере при проведении исследований обтекания крупномасштабных моделей.

Похожие патенты RU2585890C1

название год авторы номер документа
СПОСОБ УСТАНОВКИ И ОРИЕНТАЦИИ МОДЕЛИ В АЭРОДИНАМИЧЕСКОЙ ТРУБЕ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ (ВАРИАНТЫ) 2008
  • Кислых Виталий Владимирович
  • Арифулин Рустам Ахдямович
  • Мягких Денис Алексеевич
RU2396532C2
Аэродинамическая труба 1986
  • Аркадов Ю.К.
  • Линчик Г.М.
SU1398577A1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРИРОСТА ПОДЪЕМНОЙ СИЛЫ ЛЕТАТЕЛЬНОГО АППАРАТА ПРИ ВНЕШНЕМ ПОДВОДЕ ЭНЕРГИИ 2011
  • Алферов Вадим Иванович
  • Бушмин Алексей Степанович
  • Дмитриев Леонард Макарович
RU2488796C1
Газодинамическая барокамера 2021
  • Бачин Александр Александрович
  • Лагутин Вячеслав Иванович
  • Прочухаев Михаил Васильевич
  • Сажин Дмитрий Степанович
  • Сортов Илья Игоревич
  • Храмов Николай Егорович
RU2770320C1
СПОСОБ ПРОВЕДЕНИЯ АЭРОДИНАМИЧЕСКОГО ЭКСПЕРИМЕНТА 1989
  • Бондаренко Р.М.
  • Губанов А.А.
  • Соколов В.А.
RU2023247C1
СПОСОБ АЭРОДИНАМИЧЕСКИХ ИСПЫТАНИЙ МОДЕЛИ ЛЕТАТЕЛЬНОГО АППАРАТА И СТЕНД ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Субботин Виктор Владимирович
  • Терехин Владимир Алексеевич
  • Шевяков Владимир Иванович
  • Акинфиев Владимир Олегович
  • Третьяков Владимир Федорович
  • Носков Геннадий Павлович
  • Чевагин Александр Федорович
RU2421701C1
АЭРОДИНАМИЧЕСКАЯ МОДЕЛЬ ЛЕТАТЕЛЬНОГО АППАРАТА ДЛЯ ИССЛЕДОВАНИЯ РАСПРЕДЕЛЕНИЯ ДАВЛЕНИЯ ПО ПОВЕРХНОСТИ В АЭРОДИНАМИЧЕСКИХ ИСПЫТАНИЯХ С ИМИТАЦИЕЙ СТРУЙ КОРМОВОГО РЕАКТИВНОГО ДВИГАТЕЛЯ 2015
  • Пронин Иван Васильевич
  • Лисин Валерий Анатольевич
RU2601532C1
МОДЕЛЬ ЛЕТАТЕЛЬНОГО АППАРАТА ДЛЯ ИССЛЕДОВАНИЯ ВЛИЯНИЯ СТРУИ РЕАКТИВНОГО ДВИГАТЕЛЯ НА АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЛЕТАТЕЛЬНОГО АППАРАТА 2016
  • Пронин Иван Васильевич
  • Лисин Валерий Анатольевич
  • Адаменко Роман Александрович
RU2610791C1
ФОРКАМЕРА ПОРШНЕВОЙ АЭРОДИНАМИЧЕСКОЙ УСТАНОВКИ 1967
  • Веремьев Е.С.
  • Кислых В.В.
  • Новиков Л.В.
  • Павленко С.П.
SU1840952A1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ АЭРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК МОДЕЛИ РАКЕТЫ АВИАЦИОННОГО БАЗИРОВАНИЯ 2014
  • Пронин Иван Васильевич
  • Хрянин Юрий Андреевич
  • Лисин Валерий Анатольевич
RU2564054C1

Иллюстрации к изобретению RU 2 585 890 C1

Реферат патента 2016 года УНИВЕРСАЛЬНАЯ РАБОЧАЯ КАМЕРА ЭЙФЕЛЯ АЭРОГАЗОДИНАМИЧЕСКОЙ УСТАНОВКИ

Изобретение относятся к области экспериментальной аэрогазодинамики. Универсальная рабочая камера Эйфеля аэрогазодинамической установки содержит рабочую камеру, источник модельного газа на ее входе, а на выходе камеры - диффузор. В рабочей камере установлена перегородка, образующая вспомогательную камеру. В перегородке выполнены отверстия. Одно отверстие имеет диаметр в 1,1÷1,3 раза больше выходного диаметра сопла и выполнено соосно с соплом. Отверстия на периферии перегородки снабжены заглушками. Технический результат изобретения позволяет проводить испытания как моделей кормовых частей ракет с соплами ракетных двигателей, так и различных моделей летательных аппаратов при минимальных затратах на перекомпоновку и перенастройку элементов рабочей части установки. При испытаниях моделей летательных аппаратов в отверстия на периферии перегородки устанавливают заглушки. Узел крепления державки испытываемых моделей установлен во вспомогательной камере. При испытаниях кормовой части ракеты заглушки в отверстия на периферии перегородки не устанавливают. 4 ил.

Формула изобретения RU 2 585 890 C1

Универсальная рабочая камера Эйфеля аэрогазодинамической установки, содержащая рабочую камеру, установленный в отверстии на ее входе источник модельного газа в виде аэродинамического сопла, а на выходе камеры - диффузор, отличающаяся тем, что в рабочей камере установлена перегородка, образующая вспомогательную камеру, в перегородке выполнены расположенное соосно с соплом сквозное отверстие, диаметр которого в 1,1÷1,3 раза больше выходного диаметра сопла, и ряд отверстий на ее периферии, снабженных заглушками, при этом вспомогательная камера выполнена с возможностью установки узла крепления державки испытываемых моделей, а отверстие на передней стенке рабочей камеры - с возможностью замены аэродинамического сопла на модель кормовой части ракеты с соплами.

Документы, цитированные в отчете о поиске Патент 2016 года RU2585890C1

А
Поуп, К
Гойн
Аэродинамические трубы больших скоростей
М: Мир, 1968, рис 2.22, с
Способ применения резонанс конденсатора, подключенного известным уже образом параллельно к обмотке трансформатора, дающего напряжение на анод генераторных ламп 1922
  • Минц А.Л.
SU129A1
Аэродинамическая труба 1986
  • Аркадов Ю.К.
  • Линчик Г.М.
SU1398577A1
Рабочая часть аэродинамической установки 1985
  • Воронцов В.С.
  • Доронин В.Ф.
  • Кислых В.В.
  • Подманков А.М.
  • Пучков В.В.
  • Шестаков Ю.Н.
SU1325987A1
СПОСОБ МОДЕЛИРОВАНИЯ СТРУЙНЫХ ТЕЧЕНИЙ 1972
  • Кислых В.В.
  • Шестаков Ю.Н.
  • Царегородцев Л.А.
SU425532A1

RU 2 585 890 C1

Авторы

Кислых Виталий Владимирович

Бабиков Александр Леонидович

Даты

2016-06-10Публикация

2015-03-02Подача