СИНХРОННЫЙ МАГНИТОЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР Российский патент 2016 года по МПК H02K19/16 

Описание патента на изобретение RU2588986C2

Изобретение относится к области электротехники и касается электрических машин, в частности синхронных генераторов, применяемых, например, в ветроэлектрогенераторных установках, гидрогенераторах, турбогенераторах, и аналогичного применения электрооборудования, предназначенного для преобразования механической энергии первичных двигателей в электрическую.

Известен аналог, содержащий статор и вращающийся внутри него ротор. Между статором и ротором имеется воздушный зазор (см. Иванов А.А. Справочник по электротехнике // Киев: Вища школа, 1984, 360 с. - на стр. 248).

Недостатками его являются большая масса статора, выполненного в том числе из обмоток провода; перегрев конструкции из-за вихревых токов, дороговизна используемых материалов и технологии изготовления; возможность перегрузки при повышенной нагрузке.

Задачей изобретения является уменьшение массы генератора, упрощение технологии изготовления и снижение стоимости.

Поставленная задача достигается тем, что синхронный магнитоэлектрический генератор, содержащий статор и ротор, содержит размещенные на статоре магнитоэлектрические элементы и магниты для подмагничивания магнитоэлектрических элементов.

Магнитоэлектрические элементы могут быть изготовлены с возможностью работать на резонансной частоте.

Конструкция статора может содержать магнитоэлектрические элементы, выполненные из материалов с внутренним магнитным полем и не требующие применения в конструкции магнитов для подмагничивания магнитоэлектрических элементов.

Предлагаемое изобретение позволяет получить следующий технический результат: уменьшение массы генератора, упрощение технологии изготовления и снижение стоимости, а также отсутствие нагрева элементов статора по причине отсутствия вихревых токов.

Для пояснения предлагаемого изобретения предложены чертежи. На фиг. 1 изображен продольный и поперечный разрез синхронного трехфазного МЭ генератора, на фиг. 2 изображен продольный и поперечный разрез синхронного однофазного МЭ генератора, на фиг. 3 изображены схемы принципиальные генераторов: а - трехфазного, б - однофазного.

Устройство состоит из статора генератора в составе корпуса статора 1, в плоскости которого установлены МЭ элементы 2 и магниты для подмагничивания 3; ротора генератора, который состоит из оси 4, установленной в подшипники статора 5, на оси закреплены посредством конструкционных держателей 6 магниты 7, электрический потенциал снимается с электродов 8.

Устройство работает следующим образом. На ось 4 ротора передается вращающий момент от внешнего источника движения. Ось вращает закрепленные на ней с помощью держателей 6 магниты 7. Магниты предназначены для создания переменного магнитного поля, наводимого в МЭ элементах 2 статора при их вращении. Переменное магнитное поле индуцирует переменный электрический потенциал на обкладках МЭ элемента следующим образом. МЭ элемент - это элемент, выполненный по керамической технологии, слоистый материал, искусственный материал, либо монокристалл, обладающий МЭ эффектом. МЭ эффект заключается в индуцировании электрической поляризации при воздействии на материал внешнего магнитного поля или индуцировании намагниченности при воздействии на материал внешнего электрического поля. Для примера приведем описание работы слоистого МЭ материала, состоящего из пьезокерамики на основе цирконата-титаната свинца типа ЦТС-19 и магнитострикционного материала Метглас. Исследование этого материала приведено, например, в работе (см. Бичурин М.И., Петров Р.В., Соловьев И.Н., Соловьев А.Н. Исследование магнитоэлектрических сенсоров на основе пьезокерамики ЦТС и Метгласа // Современные проблемы науки и образования. - 2012. - №1; URL: www.science-education.ru/101-5367). В конструкцию статора установлены постоянные подмагничивающие магниты 3 для создания необходимого смещения в МЭ элементе. Магнитострикционная фаза МЭ элемента, попав в зону действия переменного магнитного поля, изменяет геометрические размеры, что приводит к давлению на пьезоэлектрическую фазу МЭ элемента, а это в свою очередь индуцирует появление электрического потенциала на обкладках МЭ элемента. МЭ элементы могут быть соединены между собой, например, как показано на фиг. 3 (а - соединение для конструкции трехфазного синхронного МЭ генератора показанного на фиг. 1, б - соединение для конструкции однофазного синхронного МЭ генератора показанного на фиг. 2), либо использоваться раздельно. Если для изготовления МЭ элементов используется поляризованный пьезоэлектрик, то необходимо учитывать полярность подключения элементов. Окончательно электрический потенциал снимается с электродов 8 устройства. Кроме того, скорость ротора при постоянной частоте тока в МЭ элементах статора сохраняется постоянной и не зависит от нагрузки на валу, т.е. режим работы генератора синхронный. Для поддержания синхронного режима работы, оптимального генерирования энергии, расположение МЭ элементов на статоре симметричное, например, как показано на фиг. 1 и фиг. 2. Расположение магнитов для подмагничивания МЭ элементов выбирается таким образом, чтобы обеспечить линейный режим генерации напряжения на МЭ элементе. Существенное увеличение производительности синхронного МЭ генератора можно добиться применением резонансного режима работы МЭ элементов, например используя резонанс изгибных колебаний (см. М.И. Бичурин, В.М. Петров, К.В. Лаврентьева, Р.В. Петров Изгибные колебания двухслойной магнитострикционно-пьезоэлектрической структуры // Вестн. Новг. гос. унта. Сер.: Техн. науки. 2011. №65. С. 11-13).

По сравнению с традиционным синхронным генератором в предложенной конструкции отсутствуют катушки статора, которые имеют существенный вес, часто выполняются из дорогих медных сплавов, намотка таких катушек - это сложный технологический процесс, требующий больших трудозатрат и специального оснащения, в магнитопроводе статора возникают вихревые токи, которые являются причиной перегрева генератора и снижают его надежность. В отличие от этого, в предложенной конструкции отсутствуют катушки статора, источником э.д.с. здесь являются МЭ элементы. Конструкция корпуса статора 1 может быть выполнена из диэлектрических немагнитных материалов, что позволит исключить возникновение паразитных вихревых токов. Стоимость МЭ элементов, выполненных, например, по керамической технологии, оценивается существенно ниже в виду отсутствия дорогостоящих медных сплавов, а сама технология проста и не требует специализированных средств оснащения (см. C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions // J. Appl. Phys. 103, 031101 (2008)). Вес МЭ элементов по сравнению с катушками обмотки и стальными сердечниками меньше, т.к. плотность исходных компонентов ниже (медь - 8,92 г/см3, ЦТС - 7,4 г/см3). Возможность перегрузки при повышенной нагрузке в предложенной конструкции отсутствует, т.к. внутреннее сопротивление МЭ элементов велико и режим короткого замыкания не вызовет перегрева элементов.

Предлагаемое по п. 2 отличие обосновано тем, что эффективность работы МЭ элементов существенно выше на резонансной частоте, нежели вне резонанса, что подтверждено исследованиями, приведенными в статье (см. M.I. Bichurin, D.A. Filippov, and V.M. Petrov. Resonance magnetoelectric effects in layered magnetostrictive-piezoelectric composites // Phys. Rev. В 68, 132408, 2003). Значение преобразованной энергии в МЭ элементе в районе резонанса может превышать нерезонансное на два порядка, что обеспечивает преимущество такой конструкции. Конструкция генератора должна быть сконструирована таким образом, чтобы скорость вращения генератора была приведена в соответствие с линейными резонансными размерами МЭ элемента.

Предлагаемое по п. 3 отличие обосновано тем, что разработаные новые магнитострикционные материалы, в которых существует внутреннее магнитное поле за счет внутренних деформаций материала, остаточного намагничивания, либо градиента магнитных свойств (см. Бичурин М.И., Петров В.М., Семенов Г.А. Магнитоэлектрический материал для компонентов радиоэлектронных приборов // Патент РФ №2363074 от 11.03.2008), существенно превосходят по своей функциональности традиционные, такие как, например, никель, Метглас, пермендюр и др. Использование таких материалов позволяет исключить подмагничивание МЭ элементов, что было необходимо для преодоления квадратичного режима работы МЭ элементов и работы преобразователей в более эффективном линейном режиме.

Таким образом, предлагаемое изобретение позволяет достичь минимальный вес генератора по сравнению с традиционными имеющими обмотки статора генераторами, упрощенную технологию изготовления и минимальную стоимость, уменьшить перегрев конструкции, возникающий из-за вихревых токов, отсутствие перегрузки при повышенной нагрузке.

Похожие патенты RU2588986C2

название год авторы номер документа
МАГНИТОЭЛЕКТРИЧЕСКИЙ ДИОД С ВНУТРЕННИМ МАГНИТНЫМ ПОЛЕМ 2020
  • Иванов Сергей Николаевич
  • Бичурин Мирза Имамович
  • Семенов Геннадий Алексеевич
RU2744931C1
КОНСТРУКЦИЯ ЭЛЕКТРОДОВ ДЛЯ СНЯТИЯ ЭЛЕКТРОКАРДИОГРАММЫ 2012
  • Бичурин Мирза Имамович
  • Петров Роман Валерьевич
  • Сулиманов Рушан Абдулхакович
  • Лосев Даниил Владимирович
RU2523356C2
МАГНИТОЭЛЕКТРИЧЕСКИЙ МАТЕРИАЛ ДЛЯ КОМПОНЕНТОВ РАДИОЭЛЕКТРОННЫХ ПРИБОРОВ 2008
  • Бичурин Мирза Имамович
  • Петров Владимир Михайлович
  • Семенов Геннадий Алексеевич
RU2363074C1
МНОГОСЛОЙНАЯ КЕРАМИЧЕСКАЯ ГЕТЕРОСТРУКТУРА С МАГНИТОЭЛЕКТРИЧЕСКИМ ЭФФЕКТОМ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2011
  • Богомолов Алексей Алексеевич
  • Солнышкин Александр Валентинович
  • Карпенков Дмитрий Юрьевич
  • Головнин Владимир Алексеевич
  • Пастушенков Александр Григорьевич
  • Карпенков Алексей Юрьевич
  • Пастушенков Юрий Григорьевич
RU2491684C2
Магнитоэлектрический преобразователь ток - напряжение с удвоением частоты 2016
  • Фирсова Татьяна Олеговна
  • Филиппов Дмитрий Александрович
RU2642497C1
ПАССИВНЫЙ ДАТЧИК ПЕРЕМЕННОГО МАГНИТНОГО ПОЛЯ 2010
  • Ионов Александр Сергеевич
  • Бичурин Мирза Имамович
  • Пукинский Юрий Жанович
  • Иванов Сергей Николаевич
RU2464586C2
Магнитоэлектрический композиционный материал для датчика магнитного поля 2016
  • Калгин Александр Владимирович
  • Гриднев Станислав Александрович
  • Сидоркин Александр Степанович
RU2653134C1
СПОСОБ ИЗГОТОВЛЕНИЯ МАГНИТОЭЛЕКТРИЧЕСКИХ СТРУКТУР 2017
  • Тихонов Александр Алексеевич
  • Филиппов Дмитрий Александрович
  • Маничева Ирина Николаевна
RU2682504C1
СПОСОБ ВОЗБУЖДЕНИЯ ФЕРРОЗОНДОВ И УСТРОЙСТВО МОДУЛЯТОРА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2020
  • Брякин Иван Васильевич
  • Бочкарев Игорь Викторович
RU2768528C1
Магнитоэлектрический генератор 2018
  • Мухаметшин Рамиз Басимович
  • Шакиров Камил Киаметдинович
  • Замилов Роман Флюрович
  • Исмагилов Флюр Рашитович
  • Вавилов Вячеслав Евгеньевич
  • Бекузин Владимир Игоревич
RU2697812C2

Иллюстрации к изобретению RU 2 588 986 C2

Реферат патента 2016 года СИНХРОННЫЙ МАГНИТОЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР

Изобретение относится к области электротехники и касается электрических машин. Технический результат - уменьшение массы генератора, упрощение технологии его изготовления. Синхронный магнитоэлектрический генератор содержит статор и ротор. При этом конструкция статора содержит магнитоэлектрические элементы, расположенные на статоре, и магниты для подмагничивания магнитоэлектрических элементов, расположенных на статоре. Магнитоэлектрический элемент - это выполненный по керамической технологии слоистый материал, искусственный материал, либо монокристалл, обладающий магнитоэлектрическим эффектом. Магнитоэлектрический эффект заключается в индуцировании электрической поляризации при воздействии на материал внешнего магнитного поля или индуцировании намагниченности при воздействии на материал внешнего электрического поля. 2 н. и 1 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 588 986 C2

1. Синхронный магнитоэлектрический генератор, содержащий статор и ротор, отличающийся тем, что конструкция статора содержит магнитоэлектрические элементы, расположенные на статоре, и магниты для подмагничивания магнитоэлектрических элементов, расположенных на статоре.

2. Синхронный магнитоэлектрический генератор по п. 1, отличающийся тем, что магнитоэлектрические элементы изготовлены таким образом, чтобы работать на резонансной частоте.

3. Синхронный магнитоэлектрический генератор, содержащий статор и ротор, отличающийся тем, что конструкция статора содержит магнитоэлектрические элементы, выполненные из материалов, не требующих применения в конструкции магнитов для подмагничивания магнитоэлектрических элементов, расположенных на статоре.

Документы, цитированные в отчете о поиске Патент 2016 года RU2588986C2

US 5051640 A1, 24.09.1991
Прибор для измерения затухания колебаний в тонких листовых материалах 1953
  • Цобкалло С.О.
SU98645A1
CN 101262189 A, 10.09.2008
KR 0100982643 B1, 17.09.2010
УСТРОЙСТВО СБОРА И НАКОПЛЕНИЯ ЭНЕРГИИ НИЗКОЧАСТОТНОГО МАГНИТНОГО ПОЛЯ И МЕХАНИЧЕСКИХ КОЛЕБАНИЙ 2009
  • Бичурин Мирза Имамович
  • Петров Роман Валерьевич
  • Иванов Дмитрий Николаевич
  • Аверкин Сергей Владимирович
RU2425438C1
RU 94013173 A1, 10.12.1995.

RU 2 588 986 C2

Авторы

Петров Роман Валерьевич

Колесников Николай Андреевич

Бичурин Мирза Имамович

Даты

2016-07-10Публикация

2014-07-01Подача