СПОСОБ ОПРЕДЕЛЕНИЯ ГЕРМЕТИЧНОСТИ СКВАЖИННОГО ОБОРУДОВАНИЯ ПРИ ОДНОВРЕМЕННО-РАЗДЕЛЬНОЙ ДОБЫЧЕ ЖИДКОСТЕЙ ИЗ СКВАЖИНЫ ШТАНГОВЫМ И ЭЛЕКТРОЦЕНТРОБЕЖНЫМ НАСОСОМ Российский патент 2016 года по МПК E21B47/08 E21B43/14 

Описание патента на изобретение RU2589016C1

Изобретение относится к нефтедобывающей промышленности и может быть использовано при одновременно-раздельной эксплуатации добывающих скважин.

Известен способ одновременно-раздельной эксплуатации двухпластовой скважины, включающий проведение промывки и шаблонирования скважины, спускоподъемных операций с поблочным монтажом внутрискважинного оборудования и добычу скважинного флюида. Сначала спускают нижний блок, состоящий из воронки, забойного и опорного пакеров с прямоточной муфтой, в которой установлены трубчатые элементы с раструбами раздвижного трубного соединения, которые последовательно свинчивают в устье скважины насосно-компрессорными трубами (НКТ) и спускают с помощью посадочной колонны, оснащенной сбивным клапаном, репером и гидравлическим монтажным инструментом, последний цангой зацепляют за внутреннюю проточку в наружном трубчатом элементе с фиксированием глубины посадки, нивелируемой репером, и веса - с помощью динамометра. Вторым приемом на колонне НКТ в эксплуатационную колонну с определенной скоростью спускают второй блок внутрискважинного оборудования, состоящего из блока регулирования потоков и учета флюида (БРПУ) с ниппелями трубчатых элементов раздвижного трубного соединения, муфты ввода кабеля связи с кабельным разъемом и электроцентробежный насос (ЭЦН) с частотно-регулируемым электроприводом, соединенным с силовым кабелем и оснащенным телеметрической системой (ТМС), до полного сочленения раздвижного трубного соединения. Колонну НКТ подгоночным патрубком герметично соединяют с планшайбой устьевой арматуры, концы обоих кабелей пропускают через кабельный ввод планшайбы и последнюю закрепляют на фланце эксплуатационной колонны. Кабели герметизируют в кабельном вводе планшайбы и подсоединяют к пункту электропитания и панели управления. Герметичность посадки пакеров проверяют понижением статического уровня жидкости в надпакерном пространстве ЭЦН под контролем манометра. Изменением частоты вращения ЭЦН посредством частотно-регулируемого электропривода и положений клапанов БРПУ скважину вводят в рабочий режим эксплуатации под контролем ТМС (патент РФ №2562641, кл. E21B 43/14, опубл. 10.09.2015).

Наиболее близким к предложенному изобретению по технической сущности является способ одновременно-раздельной эксплуатации скважины многопластовых месторождений, включающий спуск в скважину с несколькими пластами на колонне труб без или с заглушенным нижним концом, по меньшей мере, пакеров механического, импульсного, опорного, гидравлического, гидромеханического или электрического действия с разъединителем колонны труб или без него. При этом пакер состоит, по крайней мере, из корпуса, ствола и набора манжет. А разъединитель колонны труб состоит, по меньшей мере, из корпуса и ствола, разобщенных между собой уплотнительными элементами, и срезных винтов. По одному из вариантов между двумя призабойными зонами пластов размещают два пакера в любой из комбинаций и между ними спускают перепускной элемент в виде скважинной камеры или патрубка, или клапана, с циркуляционными каналами. После одновременной или раздельной посадки этих пакеров в скважине проверяют их герметичность, подавая жидкость между пакерами через перепускной элемент путем создания избыточного давления в колонне труб. При остановке подачи жидкости, если происходит падение значения последнего, принимают посадку пакеров между пластами негерметичными и при этом поднимают их из скважины. При непадении избыточного давления принимают посадку пакеров герметичными и запускают скважину в эксплуатацию. По второму варианту устанавливают пакер с двумя наборами манжет, между которыми на стволе выполняют циркуляционные каналы и на нем размещают опорную втулку с перепускными каналами. Жидкость для проверки герметичности подают между двумя наборами манжет. По третьему варианту разъединитель колонны труб устанавливают, по меньшей мере, над пакером, расположенным между двумя призабойными зонами пластов. При этом его ствол выполняют, по меньшей мере, с одной или двумя канавками под срезные винты и соответственно на корпусе обеспечивают два ряда отверстий со срезными винтами. При отсоединении корпуса от ствола срезают два ряда срезных винтов последовательно при повышении избыточной нагрузки на колонну труб при срыве пакера или пакеров (патент РФ №2380526, кл. E21B 43/14, опубл. 27.01.2010 - прототип).

Известные способы не обеспечивают возможности определения герметичности скважинного оборудования при одновременно-раздельной добыче (ОРД) жидкостей из скважины штанговым глубинным насосом (ШГН) и ЭЦН.

В предложенном изобретении решается задача определения герметичности скважинного оборудования при одновременно-раздельной добыче жидкостей из скважины ШГН и ЭЦН.

Задача решается тем, что в способе определения герметичности скважинного оборудования при ОРД жидкостей из скважины ШГН и ЭЦН определяют динамический уровень в межтрубном пространстве верхнего объекта, снимают динамограмму ШГН, снимают параметры работы ЭЦН с ТМС, отбирают контрольную пробу жидкости из выкидной линии на обводненность, убеждаются в исправности и герметичности устьевой арматуры, останавливают ШГН верхнего объекта, как в нижнем, так и в верхнем положении наземного привода ШГН производят опрессовку НКТ с помощью ЭЦН нижнего объекта с прослеживанием изменения давления на буфере при работе на закрытую задвижку, останавливают ЭЦН и следят за показаниями работы установки по станции управления (СУ), при наличии аварийного сигнала “турбинное вращение” делают заключение о сливе жидкости из НКТ и о негерметичности обратного клапана ЭЦН, при идентичных темпах увеличения и падения давления на буфере скважины в различных положениях наземного привода ШГН и темпе падения давления в пределах не более 2 МПа за 15 минут делают заключение о герметичности коммутатора и НКТ в интервале от ЭЦН до устья скважины, при темпе увеличения давления на буфере скважины в верхнем положении наземного привода ниже, и темпе падения выше, чем в нижнем положении, делают заключение о негерметичности манжетного крепления в замковой опоре коммутатора, если в верхнем положении наземного привода ШГН ЭЦН не развивает давления на буфере скважины, а в нижнем развивает и происходит подъем уровня жидкости в затрубном пространстве, то делают заключение о выходе манжетного крепления ШГН из замковой опоры коммутатора, если как в нижнем, так и в верхнем положении наземного привода ШГН темп падения давления на буфере более 2 МПа за 15 минут, то делают заключение о негерметичности коммутатора и/или НКТ в интервале от ЭЦН до устья скважины, запускают ШГН и ЭЦН в работу, не останавливая ШГН верхнего объекта, останавливают работу ЭЦН нижнего объекта, сразу после остановки ЭЦН нижнего объекта прослеживают уровень жидкости в межтрубном пространстве, а также периодически записывают изменение давления под пакером по показаниям ТМС на табло контроллера СУ, при стабильно повышающемся уровне жидкости делают заключение о негерметичности, а при неизменном уровне жидкости делают заключение о герметичности пакера или участка НКТ от ЭЦН до пакера.

Сущность изобретения

Способ контроля герметичности скважинного оборудования основан на обнаружении гидравлической связи между надпакерной и подпакерной зонами путем выявления изменения уровня жидкости, давления газа в межтрубном пространстве, а также давления на приеме насоса, эксплуатирующего подпакерный объект, при остановке работы одного из объектов разработки.

Необходимость исследования скважин с одновременно-раздельной добычей жидкостей должна подтверждаться косвенными признаками негерметичности системы, т.е. соответствующей динамикой изменения режима эксплуатации объекта: обводненности продукции, физико-химических свойств добываемой жидкости, забойных давлений.

При существенном отличии обводненности добываемой жидкости и физико-химических свойств воды по объектам, для обоснования подозрения наличия негерметичности системы важнейшей информацией может являться значительное изменение обводненности добываемой жидкости за короткий промежуток времени, одновременно с этим, изменение плотности и химического состава добываемой воды.

На фиг. 1 представлена конструкция скважины с одновременно-раздельной добычей при совместном подъеме жидкостей, а на фиг. 2 - при раздельном подъеме добываемых жидкостей.

На фиг. 1 и 2 приняты следующие обозначения: 1 - патрубок, 2 - пакер, 3 - колонна НКТ, 4 - ЭЦН, приемная часть и ПЭД его в кожухе 5, 6 - коммутатор, 7 - ШГН, 8 - колонна штанг, 9 - устьевая обвязка, 10 - буфер, 11 - манометр. Выше коммутатора 6 колонна НКТ выполнена большого диаметра 12, в которой размещен ШГН 7. Выше ШГН 7 колонна НКТ выполнена меньшего диаметра 13. Компоновка размещена в скважине 14, вскрывшей нижний продуктивный пласт 15 и верхний продуктивный пласт 16.

Скважинное оборудование работает следующим образом.

ШГН 7 получает привод через колонну штанг 8 и отбирает жидкости из верхнего продуктивного пласта 16 через коммутатор 6 и посредством системы клапанов ШГН направляет их в колонну НКТ 12 при совместном подъеме добываемых жидкостей (см. фиг. 1), а в колону НКТ 13 при раздельном подъеме выше ШГН 6 к устью скважины 14. ЭЦН 4 отбирает жидкости из нижнего продуктивного пласта 15 через патрубок 1 и колонну НКТ 3 и кожух 5 под ЭЦН 4 и подает их через внутренний объем коммутатора 6 в колонну НКТ 12 выше коммутатора 6. В колонне НКТ 3 выше ШГН 7 жидкости из нижнего 15 и верхнего 16 пластов или смешиваются, или раздельно поднимаются вверх к устью скважины 14. Манометр 11 на буфере 10 устьевой обвязки 9 замеряет давление в колонне НКТ 12 скважины 14.

Определение герметичности глубинно-насосного оборудования проводят следующим образом.

Для дифференцированного подхода к выявлению негерметичности отдельных участков компоновки внутрискважинного оборудования скважины с ОРД предварительно испытывают на герметичность колонну НКТ, а также систему “НКТ - замковая опора коммутатора” при помощи ЭЦН. Это позволяет методом исключения выявлять герметичную часть внутрискважинного оборудования и негерметичную часть оставшихся узлов компоновки в системе.

Необходимость исследования скважин с ОРД должна подтверждаться косвенными признаками негерметичности, т.е. соответствующей динамикой изменения режима эксплуатации объекта: обводненности продукции, физико-химических свойств добываемой жидкости, забойных давлений. При существенном отличии обводненности добываемой жидкости и физико-химических свойств воды по объектам, для обоснования подозрения наличия негерметичности системы важнейшей информацией может являться значительное изменение обводненности добываемой жидкости за короткий промежуток времени, одновременно с этим изменение плотности и химического состава добываемой воды.

Перед началом исследований по определению герметичности системы на работающих объектах определяют динамический уровень в межтрубном пространстве верхнего объекта, снимают динамограмму ШГН для определения работоспособности глубинно-насосного оборудования верхнего объекта, снимают параметры работы ЭЦН с ТМС для определения работоспособности глубинно-насосного оборудования нижнего объекта, отбирают контрольную пробу жидкости из выкидной линии на обводненность (из каждой линии, если скважина с ОРД является 2-лифтовой), убеждаются в исправности и герметичности устьевой арматуры.

Останавливают ШГН верхнего объекта. Проводят опрессовку колонны НКТ с помощью ЭЦН нижнего объекта путем прослеживания изменения давления на буфере при работе на закрытую задвижку. Опрессовку колонны НКТ для определения утечек в коммутаторе производят как в нижнем, так и в верхнем положении наземного привода ШГН.

После остановки ЭЦН на время опрессовки НКТ убеждаются в отсутствии утечек в обратном клапане ЭЦН. Для этого следят за показаниями работы установки по СУ: если после остановки ЭЦН на СУ выходит аварийный сигнал “турбинное вращение”, то это свидетельствует о сливе жидкости из НКТ, то есть о негерметичности обратного клапана насоса. При отсутствии утечек в обратном клапане продолжают дальнейшие работы.

Если темпы увеличения и падения давления на буфере скважины в различных положениях наземного привода идентичны и темп падения давления находится в пределах нормы (не более 2 МПа за 15 минут), то это свидетельствует о герметичности коммутатора и НКТ в интервале от ЭЦН до устья скважины.

Если темп увеличения давления на буфере скважины в верхнем положении наземного привода ШГН ниже, а темп падения выше, чем в нижнем положении ШГН, то не герметично манжетное крепление в замковой опоре коммутатора.

Если в верхнем положении наземного привода ШГН ЭЦН не развивает давления на буфере скважины, а в нижнем развивает, и происходит подъем уровня жидкости в затрубном пространстве, то это свидетельствует о выходе манжетного крепления вставного штангового насоса из замковой опоры коммутатора.

Если как в нижнем, так и в верхнем положении наземного привода ШГН темп падения давления не соответствует норме, т.е. более 2 МПа за 15 минут, то это свидетельствует о негерметичности коммутатора и/или колонны НКТ в интервале от ЭЦН до устья скважины.

Для определения герметичности колонны НКТ в интервале от ЭЦН до коммутатора - место соединения ШГН с коммутатором - внутренний ряд колонны НКТ - внешний ряд колонны НКТ отключают ШГН и закрывают линейную задвижку верхнего объекта. Далее производят опрессовку системы на 12 МПа с помощью ЭЦН нижнего объекта путем прослеживания изменения давления на буфере скважины при работе на закрытую задвижку устьевой обвязки.

Если темп падения давления в системе находится в пределах нормы (не более 2 МПа за 15 минут) и давление в выкидной линии ШГН практически не изменилось, то это свидетельствует о герметичности колоне НКТ в интервале от ЭЦН до коммутатора - место соединения ШГН с коммутатором - внутренний ряд колонны НКТ - внешний ряд колонны НКТ.

Если темп падения давления в системе более 2 МПа за 15 минут, а давление в выкидной линии ШГН практически не изменилось (возможен незначительный рост), то это свидетельствует о возможной негерметичности места соединения ШГН с коммутатором и/или НКТ в интервале от ЭЦН до коммутатора и/или внешнего ряда колонны НКТ.

Стабильное повышение давления на выкидной линии ШГН, сопровождаемое с одновременным стремлением к выравниванию давлений на буфере ЭЦН и ШГН, а также дальнейшее прекращение падения давления на буфере ЭЦН и рост давления в выкидной линии ШГН свидетельствуют о негерметичности внутреннего ряда колонны НКТ.

Негерметичность внутреннего ряда колонны НКТ приводит к значительному обводнению продукции скважины из нефтяного объекта. Но не всегда по увеличению обводненности можно судить о негерметичности пакера. В связи с этим выявление и исключение фактора негерметичности внутреннего ряда НКТ позволит выбрать целесообразный подход к исследованиям по определению герметичности непосредственно пакера в компоновке 2-лифтовой ОРД ЭЦН-ШГН.

Для определения герметичности пакера, не останавливая ШГН верхнего объекта, останавливают работу ЭЦН нижнего объекта. Сразу после остановки ЭЦН нижнего объекта в течение 3-4 часов прослеживают уровень жидкости в межтрубном пространстве путем периодической отбивки динамического уровня, а также периодически записывают изменение давления под пакером по показаниям ТМС на табло контроллера СУ. При неясном характере изменения динамического уровня продолжают исследование на следующий день. В конце исследования отбирают пробу жидкости на обводненность.

В процессе контролирования уровня жидкости в межтрубном пространстве может наблюдаться, что стабильно повышается уровень жидкости или уровень жидкости не изменяется.

Если в процессе прослеживания уровень жидкости в межтрубном пространстве заметно повышается, то это свидетельствует о негерметичности пакера, участка НКТ от ЭЦН до пакера (при отсутствии заколонного перетока жидкости между двумя продуктивными пластами).

При выравнивании гидростатического давления столба жидкости над пакером с давлением под пакером, дальнейшее снижение уровня жидкости в межтрубном пространстве прекращается. Признаком, подтверждающим наличие негерметичности пакера, участка НКТ от ЭЦН до пакера (при отсутствии перетока жидкости между двумя продуктивными пластами), служит соответствие установившегося статического давления на приеме ЭЦН динамическому уровню в затрубном пространстве в конце исследования. Для расчета давления под пакером в конце исследования фиксируют текущее статическое давление на приеме ЭЦН по показанию ТМС, рассчитывают давление, создаваемое столбом жидкости, соответствующее установившемуся динамическому уровню в затрубном пространстве, соотносят полученные значения, учитывая давление столба жидкости в НКТ в интервале от ЭЦН до пакера. Если уровень жидкости не изменяется, это означает, что пакер герметичен.

Пример конкретного выполнения

Проводят определение герметичности скважинного оборудования при ОРД жидкостей из скважины ШГН и ЭЦН. Скважиной вскрыты 2 продуктивных пласта на глубинах 1928 м и 1917 м. Скважина оборудована согласно схемы на фиг. 1. ШГН работает с дебитом 17 м3/сут., ЭЦН работает с дебитом 61 м3/сут. Определяют динамический уровень в межтрубном пространстве верхнего объекта, равный 1186 м. Затрубное давление 1.4 Мпа. Снимают динамограмму ШГН, снимают параметры работы ЭЦН с ТМС, отбирают контрольную пробу жидкости из выкидной линии на обводненность, убеждаются в исправности и герметичности устьевой арматуры. Останавливают ШГН. Переводят станок-качалку ШГН на устье скважины поочередно то в нижнее, то в верхнее положение (наземный привод). При этом производят опрессовку НКТ с помощью ЭЦН нижнего объекта с прослеживанием изменения давления на буфере при работе на закрытую задвижку. Останавливают ЭЦН и следят за показаниями работы установки по СУ. Аварийный сигнал “турбинное вращение” отсутствует. Делают заключение о герметичности обратного клапана ЭЦН.

Темпы увеличения и падения давления на буфере скважины в различных положениях станка-качалки ШГН идентичны, темп падения давления в пределах не более 2 МПа за 15 минут. Делают заключение о герметичности коммутатора и НКТ в интервале от ЭЦН до устья скважины.

Темп увеличения давления на буфере скважины в верхнем положении станка-качалки ниже, и темп падения выше, чем в нижнем положении. Делают заключение о негерметичности манжетного крепления в замковой опоре коммутатора.

В верхнем положении станка-качалки ШГН ЭЦН не развивает давления на буфере скважины, а в нижнем развивает и происходит подъем уровня жидкости в затрубном пространстве. Делают заключение о выходе манжетного крепления ШГН из замковой опоры коммутатора.

Как в нижнем, так и в верхнем положении станка-качалки ШГН темп падения давления на буфере более 2 МПа за 15 минут. Делают заключение о негерметичности коммутатора и/или НКТ в интервале от ЭЦН до устья скважины.

Запускают ШГН и ЭЦН в работу. Не останавливая ШГН верхнего объекта, останавливают работу ЭЦН нижнего объекта. Сразу после остановки ЭЦН нижнего объекта в течение 4 часов прослеживают уровень жидкости в межтрубном пространстве, а также периодически записывают изменение давления под пакером по показаниям ТМС на табло контроллера СУ. Уровень жидкости неизменный. Делают заключение о герметичности пакера или участка НКТ от ЭЦН до пакера.

В результате удается определить герметичности глубинных оборудований.

Похожие патенты RU2589016C1

название год авторы номер документа
Способ определения герметичности скважинного оборудования для одновременно-раздельной эксплуатации 2019
  • Ризатдинов Ринат Фаритович
  • Каюмов Роберт Рафаилевич
RU2720727C1
СПОСОБ ДОБЫЧИ НЕФТИ ГАРИПОВА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Гарипов Олег Марсович
  • Багров Олег Викторович
  • Мустафин Эдвин Ленарович
  • Гарипов Максим Олегович
RU2405918C1
СКВАЖИННАЯ НАСОСНАЯ ПАКЕРНАЯ УСТАНОВКА ГАРИПОВА 2010
  • Гарипов Олег Марсович
  • Багров Олег Викторович
  • Мустафин Эдвин Ленарович
  • Гарипов Максим Олегович
RU2439374C1
НАСОСНАЯ УСТАНОВКА ДЛЯ ОДНОВРЕМЕННОЙ РАЗДЕЛЬНОЙ ЭКСПЛУАТАЦИИ ДВУХ ПЛАСТОВ В СКВАЖИНЕ 2010
  • Шариков Геннадий Нестерович
  • Кормишин Евгений Григорьевич
  • Гафиятуллин Халил Хафизович
  • Курбангалеев Ильдар Залялитдинович
RU2427705C1
СПОСОБ ПОВЫШЕНИЯ ДОСТОВЕРНОСТИ КОНТРОЛЯ ОБВОДНЕННОСТИ ПРОДУКЦИИ НЕФТЕДОБЫВАЮЩИХ СКВАЖИН, ОБОРУДОВАННЫХ ШТАНГОВЫМИ ГЛУБИННЫМИ НАСОСАМИ 2018
  • Алаева Наталья Николаевна
  • Горшкова Кристина Леонидовна
  • Баранков Евгений Юрьевич
RU2700738C1
ГИДРАВЛИЧЕСКИЙ МНОГОРАЗОВЫЙ ПАКЕР ГАРИПОВА, УСТАНОВКА И СПОСОБ ДЛЯ ЕГО РЕАЛИЗАЦИИ 2010
  • Гарипов Олег Марсович
  • Мустафин Эдвин Ленарович
RU2425955C1
ГЛУБИННОЕ ГАЗОПЕРЕПУСКНОЕ УСТРОЙСТВО ДЛЯ СКВАЖИНЫ, ЭКСПЛУАТИРУЕМОЙ ШТАНГОВЫМ НАСОСОМ 2018
  • Абдулхаиров Рашит Мухаметшакирович
  • Шаяхметов Азат Шамилевич
  • Нуруллин Ильшат Рифович
  • Шаяхметов Шамиль Кашфуллинович
RU2704088C1
СПОСОБ ЭКСПЛУАТАЦИИ НЕФТЯНОЙ ДОБЫВАЮЩЕЙ СКВАЖИНЫ 2003
  • Задумин С.С.
  • Закиров С.Н.
  • Мамедов Т.М.
  • Северинов Э.В.
  • Шайхутдинов И.К.
RU2225938C1
СПОСОБ ЭКСПЛУАТАЦИИ ГЛУБИННОГО НАСОСНОГО ОБОРУДОВАНИЯ НЕФТЕДОБЫВАЮЩЕЙ СКВАЖИНЫ 2016
  • Денисламов Ильдар Зафирович
  • Зейгман Юрий Вениаминович
  • Камалтдинов Альфред Рафаилович
RU2645196C1
СПОСОБ ЭКСПЛУАТАЦИИ НЕФТЯНОЙ СКВАЖИНЫ 2016
  • Валеев Мурад Давлетович
  • Багаутдинов Марсель Азатович
  • Костилевский Валерий Анатольевич
RU2640597C1

Иллюстрации к изобретению RU 2 589 016 C1

Реферат патента 2016 года СПОСОБ ОПРЕДЕЛЕНИЯ ГЕРМЕТИЧНОСТИ СКВАЖИННОГО ОБОРУДОВАНИЯ ПРИ ОДНОВРЕМЕННО-РАЗДЕЛЬНОЙ ДОБЫЧЕ ЖИДКОСТЕЙ ИЗ СКВАЖИНЫ ШТАНГОВЫМ И ЭЛЕКТРОЦЕНТРОБЕЖНЫМ НАСОСОМ

Изобретение относится к нефтедобывающей промышленности и может быть использовано при одновременно-раздельной эксплуатации добывающих скважин. Техническим результатом является определение герметичности скважинного оборудования. При определении герметичности скважинного оборудования при одновременно-раздельной добыче жидкостей из скважины штанговым глубинным насосом и электроцентробежным насосом определяют динамический уровень в межтрубном пространстве верхнего объекта, снимают динамограмму штангового глубинного насоса. Далее снимают параметры работы электроцентробежного насоса с телеметрической системой, отбирают контрольную пробу жидкости из выкидной линии на обводненность, убеждаются в исправности и герметичности устьевой арматуры, останавливают штанговый глубинный насос верхнего объекта. Затем как в нижнем, так и в верхнем положении наземного привода штангового глубинного насоса производят опрессовку колонны насосно-компрессорных труб с помощью электроцентробежного насоса нижнего объекта с прослеживанием изменения давления на буфере при работе на закрытую задвижку. После остановки электроцентробежного насоса следят за показаниями работы установки по станции управления, при наличии аварийного сигнала “турбинное вращение” делают заключение о сливе жидкости из колонны насосно-компрессорных труб и о негерметичности обратного клапана электроцентробежного насоса. При идентичных темпах увеличения и падения давления на буфере скважины в различных положениях наземного привода штангового глубинного насоса и темпе падения давления в пределах не более 2 МПа за 15 минут делают заключение о герметичности коммутатора и колонны насосно-компрессорных труб в интервале от электроцентробежного насоса до устья скважины. При темпе увеличения давления на буфере скважины в верхнем положении наземного привода штангового глубинного насоса ниже и темпе падения выше, чем в нижнем положении привода штангового глубинного насоса, делают заключение о негерметичности манжетного крепления в замковой опоре коммутатора. Если в верхнем положении наземного привода штангового глубинного насоса электроцентробежный насос не развивает давления на буфере скважины, а в нижнем развивает и происходит подъем уровня жидкости в затрубном пространстве, то делают заключение о выходе манжетного крепления штангового глубинного насоса из замковой опоры коммутатора. Если как в нижнем, так и в верхнем положении наземного привода штангового глубинного насоса темп падения давления на буфере более 2 МПа за 15 минут, то делают заключение о негерметичности коммутатора и/или колонны насосно-компрессорных труб в интервале от электроцентробежного насоса до устья скважины. Далее запускают штанговый глубинный насос и электроцентробежный насос в работу, не останавливая штангового глубинного насоса верхнего объекта, останавливают работу электроцентробежного насоса нижнего объекта. Сразу после остановки электроцентробежного насоса нижнего объекта прослеживают уровень жидкости в межтрубном пространстве, а также периодически записывают изменение давления под пакером по показаниям телеметрической системы на табло контроллера станции управления. При стабильно повышающемся уровне жидкости делают заключение о негерметичности, а при неизменном уровне жидкости делают заключение о герметичности пакера или участка колонны насосно-компрессорных труб от электроцентробежного насоса до пакера. 2 ил.

Формула изобретения RU 2 589 016 C1

Способ определения герметичности скважинного оборудования при одновременно-раздельной добыче жидкостей из скважины штанговым и электроцентробежным насосом, заключающийся в том, что определяют динамический уровень в межтрубном пространстве верхнего объекта, снимают динамограмму штангового глубинного насоса, снимают параметры работы электроцентробежного насоса с телеметрической системой, отбирают контрольную пробу жидкости из выкидной линии на обводненность, убеждаются в исправности и герметичности устьевой арматуры, останавливают штанговый глубинный насос верхнего объекта, как в нижнем, так и в верхнем положении наземного привода штангового глубинного насоса производят опрессовку колонны насосно-компрессорных труб с помощью электроцентробежного насоса нижнего объекта с прослеживанием изменения давления на буфере при работе на закрытую задвижку, останавливают электроцентробежный насос и следят за показаниями работы установки по станции управления, при наличии аварийного сигнала “турбинное вращение” делают заключение о сливе жидкости из колонны насосно-компрессорных труб и о негерметичности обратного клапана электроцентробежного насоса, при идентичных темпах увеличения и падения давления на буфере скважины в различных положениях наземного привода штангового глубинного насоса и темпе падения давления в пределах не более 2 МПа за 15 минут делают заключение о герметичности коммутатора и колонны насосно-компрессорных труб в интервале от электроцентробежного насоса до устья скважины, при темпе увеличения давления на буфере скважины в верхнем положении наземного привода штангового глубинного насоса ниже и темпе падения выше, чем в нижнем положении привода штангового глубинного насоса, делают заключение о негерметичности манжетного крепления в замковой опоре коммутатора, если в верхнем положении наземного привода штангового глубинного насоса электроцентробежный насос не развивает давления на буфере скважины, а в нижнем развивает и происходит подъем уровня жидкости в затрубном пространстве, то делают заключение о выходе манжетного крепления штангового глубинного насоса из замковой опоры коммутатора, если как в нижнем, так и в верхнем положении наземного привода штангового глубинного насоса темп падения давления на буфере более 2 МПа за 15 минут, то делают заключение о негерметичности коммутатора и/или колонны насосно-компрессорных труб в интервале от электроцентробежного насоса до устья скважины, запускают штанговый глубинный насос и электроцентробежный насос в работу, не останавливая штангового глубинного насоса верхнего объекта, останавливают работу электроцентробежного насоса нижнего объекта, сразу после остановки электроцентробежного насоса нижнего объекта прослеживают уровень жидкости в межтрубном пространстве, а также периодически записывают изменение давления под пакером по показаниям телеметрической системы на табло контроллера станции управления, при стабильно повышающемся уровне жидкости делают заключение о негерметичности, а при неизменном уровне жидкости делают заключение о герметичности пакера или участка колонны насосно-компрессорных труб от электроцентробежного насоса до пакера.

Документы, цитированные в отчете о поиске Патент 2016 года RU2589016C1

Способ формирования железнодорожных, трамвайных и других колесных пар 1952
  • Андреев Г.Я.
SU109792A1
СПОСОБ ОДНОВРЕМЕННО-РАЗДЕЛЬНОЙ ЭКСПЛУАТАЦИИ ДВУХПЛАСТОВОЙ СКВАЖИНЫ И СКВАЖИННАЯ НАСОСНАЯ УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Николаев Олег Сергеевич
RU2562641C2
СПОСОБ ШАРИФОВА ДЛЯ ОДНОВРЕМЕННО-РАЗДЕЛЬНОЙ И ПООЧЕРЕДНОЙ ЭКСПЛУАТАЦИИ НЕСКОЛЬКИХ ПЛАСТОВ ОДНОЙ НАГНЕТАТЕЛЬНОЙ СКВАЖИНОЙ 2003
  • Шарифов Махир Зафар Оглы
  • Леонов В.А.
  • Кудряшов С.И.
  • Шашель В.А.
  • Хамракулов А.А.
  • Гарипов О.М.
  • Прытков Д.В.
RU2253009C1
СПОСОБ ОДНОВРЕМЕННО-РАЗДЕЛЬНОЙ ИЛИ ПООЧЕРЕДНОЙ ДОБЫЧИ ПЛАСТОВОГО ФЛЮИДА ИЗ СКВАЖИН МНОГОПЛАСТОВЫХ МЕСТОРОЖДЕНИЙ С ПРЕДВАРИТЕЛЬНОЙ УСТАНОВКОЙ ПАКЕРОВ 2014
  • Малыхин Игорь Александрович
RU2552555C1
US 6119780 A, 19.09.2000.

RU 2 589 016 C1

Авторы

Ибрагимов Наиль Габдулбариевич

Рахманов Айрат Рафкатович

Джафаров Мирзахан Атакиши Оглы

Матвеев Дмитрий Валерьевич

Хазипов Фарид Раисович

Даты

2016-07-10Публикация

2015-11-05Подача