СПОСОБ ОПРЕДЕЛЕНИЯ МАССЫ КИСЛОРОДА В КИСЛОРОДОСОДЕРЖАЩЕМ ПОТОКЕ Российский патент 2016 года по МПК G01N23/00 

Описание патента на изобретение RU2594113C9

Изобретение относится к измерительной технике и может быть использовано для определения массы кислорода в кислородосодержащем потоке.

Известен способ определения состава многофазной жидкости [патент РФ №2184367, МПК G01N 23/08, G01N 23/12, «Способ и измерительный прибор для определения состава многофазной жидкости»]. Способ определения состава многофазной жидкости путем пропускания через нее пучка фотонов и измерения уровня поглощения излучения жидкостью при как минимум трех уровнях энергии излучения и передачи данных измерения поглощения излучения на блок обработки данных. Блок программируется так, что он осуществляет вычисления в соответствии с алгоритмом вычисления фазовой доли на основании упомянутых данных о поглощении излучения и на основании упомянутых вычислений выдает данные, касающиеся состава жидкости. Причем многофазная жидкость содержит соленую воду, а алгоритм расчета фазовой доли включает в себя этапы определения солености воды. Способ согласно изобретению основан на понимании того факта, что содержание соли, если таковая имеется, в воде, выдаваемой, например, скважиной для добычи сырой нефти, может оказывать существенное воздействие на поглощение жидкостью пучка фотонов.

Недостатком известного технического решения является его непригодность для определения массы кислорода в кислородосодержащем потоке.

Наиболее близким к предлагаемому техническому решению является способ определения состава многофазного потока скважинной продукции [патент РФ №2334972, МПК G01N 23/00 (2006.01), «Способ и устройство для определения состава многофазного потока скважинной продукции»]. Способ основан на облучении флюида гамма-квантами. Для облучения используют источник гамма-квантов с двумя энергетическими пиками. Одним детектором регистрируют гамма-кванты, испытавшие одно комптоновское рассеяние на компонентах скважинной продукции, а другим - детектором гамма-кванты, прошедшие через трубу без взаимодействия. Калибровку системы проводят по воде, газу и нефти, вычисляя коэффициент поглощения и коэффициент комптоновского рассеяния во всех энергетических окнах. Составляют систему уравнений, первое из которых отражает тот факт, что сумма объемных долей равна единице, а следующие уравнения отражают зависимость поглощения в энергетических окнах от объемных долей различных фаз и зависимость количества рассеянных гамма-квантов от объемных долей различных фаз. Решая составленную систему уравнений, определяют состав многофазной смеси потока.

Недостатками данного способа являются, во-первых, наличие зависимости точности определения массы кислорода в кислородосодержащем потоке от толщины слоя исследуемого потока вдоль оси пучка гамма-квантов из-за изменения коэффициентов рассеяния и поглощения гамма-квантов, во-вторых, относительно большие затраты времени на облучение компонент кислородосодержащего потока из-за того, что облучение потока в течение относительно малого времени не позволяет разделить пики в спектре от рассеянных и нерассеянных гамма-квантов.

Задача изобретения состоит в исключении указанных недостатков, а именно в исключении зависимости точности определения массы кислорода в кислородосодержащем потоке и уменьшении затрат времени на облучение кислородосодержащего потока.

Для исключения указанных недостатков в способе определения массы кислорода в кислородосодержащем потоке, включающем облучение кислородосодержащего потока и регистрацию гамма-квантов, предлагается:

- облучение проводить быстрыми нейтронами в импульсном режиме;

- регистрировать гамма-кванты, образующиеся в результате снятия возбуждения остаточных ядер от активации быстрыми нейтронами ядер кислорода;

- проводить анализ полученных спектров зарегистрированных гамма-квантов;

- определять количество гамма-квантов с энергией 6,13±0,62 МэВ от облученного объема;

- определять время переноса облученного объема как разницу моментов начала регистрации гамма-квантов и момента начала облучения кислородосодержащего потока;

- массу кислорода рассчитывать по соотношению с учетом числа зарегистрированных гамма-квантов с энергией 6,13±0,62 МэВ, постоянной распада для азота-16, времени переноса облученного объема от источника к детектору, эффективности регистрации детектора, плотности потока быстрых нейтронов, частоты следования импульсов, длительности импульса облучения, времени облучения, сечение реакции 16O(n,p)16N, числа Авогадро и молярной массы кислорода.

Сущность способа определения массы кислорода в кислородосодержащем потоке заключается в следующем.

Кислородосодержащий поток облучают быстрыми нейтронами в импульсном режиме и регистрируют гамма-кванты, образующиеся в результате снятия возбуждения остаточных ядер от активации быстрыми нейтронами ядер кислорода, проводят анализ полученных спектров зарегистрированных гамма-квантов, определяют количество гамма-квантов с энергией 6,13±0,62 МэВ от облученного объема, определяют время переноса облученного объема как разницу моментов начала регистрации гамма-квантов и момента начала облучения кислородосодержащего потока, а массу кислорода рассчитывают по соотношению (1)

где mк - масса атомов кислорода, прошедших через трубу за время τ; Nγ - число зарегистрированных гамма-квантов с энергией 6,13±0,62 МэВ; λ - постоянная распада для азота-16, c-1; t - время переноса облученного объема от источника к детектору, с; ε - эффективность регистрации детектора; ϕ - плотность потока быстрых нейтронов, частиц·с-1·см-2, ν - частота следования импульсов, с-1, Т - длительность импульса облучения, с; τ - время облучения, с; σ - сечение реакции 16O(n,p)16N, см2; NA - число Авогадро, моль-1; МК - молярная масса кислорода (г·моль-1).

Стоит отметить, что гамма-кванты с энергией 6,13±0,62 МэВ характерны именно для снятия остаточного возбуждения при распаде азота-16.

Пример конкретного использования способа

Активация ядер кислорода-16 (99,762% в природной смеси) быстрыми нейтронами в реакции 16O(n,p)16N приводит к образованию азота-16, имеющего период полураспада Т1/2=7,1 секунды. В результате бета-распада ядер азота-16 образуются возбужденные ядра кислорода-16, которые снимают возбуждение, испуская гамма-кванты (вероятность 69%) с энергией 6,13 МэВ.

Гамма-кванты этой энергии (с учетом точности определения энергии гамма-квантов в 10% - 6,13±0,62 МэВ) выделяются из спектра всех зарегистрированных детектором. Количество гамма-квантов Nγ будет прямо пропорционально количеству атомов 16O* с учетом эффективности регистрации детектора ε и вероятности снятия возбуждения именно через испускание гамма-квантов (69%). Выбранное время проведения замера составляет 40 с. Облучение трубы быстрыми нейтронами производится при постоянном расстоянии источник-детектор, поэтому изменение количества атомов азота-16 обусловлено только радиоактивным распадом за время переноса облученного объема t. Время переноса определяется как разница момента начала регистрации гамма-квантов от облученного объема t2 и момента начала облучения t1:t=t2-t1.

λ - постоянная распада азота-16, λ=(ln2)/T1/2=4,9 (с-1). Длительность облучения τ целесообразно выбрать равной трем периодам полураспада 7,1·3=21,3 с, хотя и не ограничиваясь этим - все зависит от требований по точности определения концентрации кислорода.

Один из вариантов исполнения устройства, на котором реализуется способ, представлен на чертеже, на котором приняты следующие позиционные обозначения: 1 - блок детектирования гамма-квантов, 2 - импульсный источник быстрых нейтронов, 3 - источники питания, 4 - комплекс обработки данных, 5 - труба.

Технический результат - повышение точности и оперативности измерений.

Похожие патенты RU2594113C9

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ НАЛИЧИЯ ОТЛОЖЕНИЙ В ПОЛОСТИ ЛИНЕЙНОГО УЧАСТКА ТРУБЫ ПОСТОЯННОГО ПРОХОДНОГО СЕЧЕНИЯ ПРИ ПРОКАЧКЕ КИСЛОРОДОСОДЕРЖАЩЕГО ПОТОКА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2015
  • Хрячков Виталий Алексеевич
  • Бондаренко Иван Петрович
  • Порываев Владимир Юрьевич
  • Талалаев Владимир Алексеевич
  • Хромылева Татьяна Александровна
RU2594397C1
СПОСОБ ОПРЕДЕЛЕНИЯ ГРАНИЦ РАЗДЕЛА СРЕД В СЕПАРАТОРАХ СЫРОЙ НЕФТИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2015
  • Хрячков Виталий Алексеевич
  • Бондаренко Иван Петрович
  • Прусаченко Павел Сергеевич
  • Талалаев Владимир Алексеевич
  • Хромылева Татьяна Александровна
RU2594114C1
СПОСОБ ОДНОВРЕМЕННОГО ИССЛЕДОВАНИЯ МЕТОДАМИ РАДИОАКТИВНОГО КАРОТАЖА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Киргизов Дмитрий Иванович
  • Баженов Владимир Валентинович
  • Лифантьев Виктор Алексеевич
  • Воронков Лев Николаевич
  • Мухамадиев Рамиль Сафиевич
RU2427861C2
АНАЛИЗАТОР МНОГОФАЗНОЙ ЖИДКОСТИ 2013
  • Микеров Виталий Иванович
  • Боголюбов Евгений Петрович
RU2530460C1
СПОСОБ ОБНАРУЖЕНИЯ И ИДЕНТИФИКАЦИИ СКРЫТЫХ ВЕЩЕСТВ 2014
  • Косов Михаил Владимирович
  • Кудинов Илья Владимирович
RU2559309C1
СПОСОБ ОБНАРУЖЕНИЯ ВЗРЫВЧАТОГО ВЕЩЕСТВА В КОНТРОЛИРУЕМОМ ПРЕДМЕТЕ 2001
  • Ольшанский Ю.И.
  • Филиппов С.Г.
  • Гжибовский Н.Э.
RU2206080C1
СПОСОБ ОБНАРУЖЕНИЯ, ИДЕНТИФИКАЦИИ И ЛОКАЛИЗАЦИИ ОРГАНИЧЕСКИХ ВЕЩЕСТВ, В ТОМ ЧИСЛЕ ВЗРЫВЧАТЫХ И НАРКОТИЧЕСКИХ ВЕЩЕСТВ, С ИСПОЛЬЗОВАНИЕМ ИМПУЛЬСНЫХ ПОТОКОВ БЫСТРЫХ НЕЙТРОНОВ 2002
  • Каретников М.Д.
  • Мелешко Е.А.
  • Яковлев Г.В.
RU2238545C2
Способ экспресс-анализа ингибирования живых белковых молекул 2021
  • Доля Сергей Николаевич
RU2776326C1
СПОСОБ ОПРЕДЕЛЕНИЯ МАССЫ СИЛИКАТНЫХ ОТЛОЖЕНИЙ НА ЕДИНИЦУ ДЛИНЫ КАНАЛА 2015
  • Хрячков Виталий Алексеевич
  • Бондаренко Иван Петрович
  • Порываев Владимир Юрьевич
  • Талалаев Владимир Алексеевич
  • Хромылева Татьяна Александровна
RU2594116C9
СПОСОБ НЕЙТРОННОГО АКТИВАЦИОННОГО КАРОТАЖА НА ХЛОР 1992
  • Кучурин Е.С.
RU2082185C1

Иллюстрации к изобретению RU 2 594 113 C9

Реферат патента 2016 года СПОСОБ ОПРЕДЕЛЕНИЯ МАССЫ КИСЛОРОДА В КИСЛОРОДОСОДЕРЖАЩЕМ ПОТОКЕ

Изобретение относится к области измерительной техники. Способ определения массы кислорода в кислородосодержащем потоке включает облучение кислородосодержащего потока и регистрацию гамма-квантов. Облучают быстрыми нейтронами в импульсном режиме Кислородосодержащий поток, регистрируют гамма-кванты, проводят анализ полученных спектров зарегистрированных гамма-квантов, определяют количество гамма-квантов с энергией 6,13±0,62 МэВ от облученного объема. Определяют время переноса облученного объема как разницу моментов начала регистрации гамма-квантов и момента начала облучения кислородосодержащего потока. Массу кислорода рассчитывают по соотношению с учетом числа зарегистрированных гамма-квантов с энергией 6,13±0,62 МэВ, постоянной распада для азота-16, времени переноса облученного объема от источника к детектору, эффективности регистрации детектора, плотности потока быстрых нейтронов, частоты следования импульсов, длительности импульса облучения, времени облучения, сечения реакции 16O(n,p)16N, числа Авогадро и молярной массы кислорода. Технический результат - повышение точности и оперативности измерений. 1 ил.

Формула изобретения RU 2 594 113 C9

Способ определения массы кислорода в кислородосодержащем потоке, включающий облучение кислородосодержащего потока и регистрацию гамма-квантов, отличающийся тем, что облучение проводят быстрыми нейтронами в импульсном режиме, регистрируют гамма-кванты, образующиеся в результате снятия возбуждения остаточных ядер от активации быстрыми нейтронами ядер кислорода, проводят анализ полученных спектров зарегистрированных гамма-квантов, определяют количество гамма-квантов с энергией 6,13±0,62 МэВ от облученного объема, определяют время переноса облученного объема как разницу моментов начала регистрации гамма-квантов и момента начала облучения кислородосодержащего потока, а массу кислорода рассчитывают по соотношению (1)

где mк - масса атомов кислорода, прошедших через трубу за время τ;
Nγ - число зарегистрированных гамма-квантов с энергией 6,13±0,62 МэВ;
λ - постоянная распада для азота-16, с-1;
t - время переноса облученного объема от источника к детектору, с;
ε - эффективность регистрации детектора;
ϕ - плотность потока быстрых нейтронов, частиц·с-1·см-2;
ν - частота следования импульсов, с-1;
T - длительность импульса облучения, с;
τ - время облучения, с;
σ - сечение реакции 16O(n,p)16N, см2;
NA - число Авогадро, моль-1;
МК - молярная масса кислорода (г·моль-1).

Документы, цитированные в отчете о поиске Патент 2016 года RU2594113C9

СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СОСТАВА МНОГОФАЗНОГО ПОТОКА СКВАЖИННОЙ ПРОДУКЦИИ 2006
  • Якимов Михаил Николаевич
  • Коркин Роман Владимирович
RU2334972C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ НАЛИЧИЯ И ГЛУБИНЫ ВОДЫ, ДОБЫВАЕМОЙ ИЗ ПЛАСТА, ВО ВРЕМЯ БУРЕНИЯ ПРИ ПОНИЖЕННОМ ГИДРОСТАТИЧЕСКОМ ДАВЛЕНИИ В СТВОЛЕ СКВАЖИНЫ 2004
  • Эдвардс Джон
  • Столлер Кристиан
  • Рейт Питер
  • Гриффитс Роджер
  • Рену Николя
RU2359118C2
US 4365154 A, 21.12.1982
АНАЛИЗАТОР МНОГОФАЗНОЙ ЖИДКОСТИ 2013
  • Микеров Виталий Иванович
  • Боголюбов Евгений Петрович
RU2530460C1
US 5025160 A1, 18.06.1991.

RU 2 594 113 C9

Авторы

Хрячков Виталий Алексеевич

Бондаренко Иван Петрович

Прусаченко Павел Сергеевич

Талалаев Владимир Алексеевич

Хромылева Татьяна Александровна

Даты

2016-08-10Публикация

2015-06-04Подача