Изобретение относится к радиотехнике, в частности к поглотителям электромагнитных волн (ЭМВ), в том числе в диапазоне сверхвысоких частот (СВЧ), и может быть использовано для обеспечения электромагнитной совместимости радиоэлектронных средств, защиты от радиоизлучений и снижения радиолокационной заметности различных объектов.
Многослойные поглотители электромагнитных волн (ПЭВ) условно делят на две группы.
К первой группе относятся ПЭВ, в структуре которых имеется большое число плоскопараллельных резистивных пленок, разделенных диэлектрическими слоями малой толщины.
Вторая группа состоит из многослойных ступенчатых ПЭВ, в которых электромагнитные параметры отдельных слоев структуры изменяются по определенному закону. При увеличении числа слоев структуры ступенчатый ПЭВ превращается в поглотитель градиентного типа или ПЭВ с распределенной проводимостью. Такие поглотители могут обладать большой широкополосностью при малой величине коэффициента отражения и небольшой толщине ПЭВ, однако являются наиболее сложными с точки зрения практического воплощения.
Известен поглотитель электромагнитных волн [RU 2119216, С1, H01Q 17/00, 20.09.1998], включающий расположенные на металлической подложке диэлектрик из двух слоев и расположенные на внешней поверхности каждого слоя решетки резонансных элементов, соответствующих длине волны согласования поглощаемого поддиапазона частот, а также N-2 дополнительных слоев диэлектрика с решетками резонансных элементов, при этом слои диэлектрика имеют переменную толщину, а их суммарная толщина меньше четверти максимальной длины волны согласования поглощаемых поддиапазонов частот, где N - число слоев диэлектрика.
Недостатками этого технического решения являются значительные весовые характеристики поглотителя и сложная технология его производства.
Кроме того, известны поглотители электромагнитных волн из радиопоглощающего материала [RU 2294948, C1, C09D 5/32, 10.03.2007], выполненные из наполнителя, в качестве которого использован нанопорошок магнитного сплава НК-29 (Ni - 29.13%, Со - 17.51%, Fe - остальное) и связующее - поливинилбутироль, который изготовлен путем нанесения радиопоглощающего материала на защищаемую поверхность в несколько слоев с промежуточной сушкой каждого слоя и помещением в один из слоев разрезных колец из электропроводящего материала, при этом по крайней мере, один из слоев радиопоглощающего покрытия изготавливают из композиционного материала с ферромагнитными свойствами, а сам слой обрабатывают в поле постоянного магнита так, что вектор напряженности магнитного поля лежит в плоскости покрытия.
Недостатками этого технического решения являются относительно узкая область применения и сложная технология изготовления и намагничивания.
К известным относятся и поглотители электромагнитных волн из радиопоглощающего материала [RU 2423761, C1, H01Q 17/00, 10.07.2011], полученного способом, включающим механическую обработку порошка оксидного гексагонального ферромагнетика с W-структурой в механоактиваторе при факторе энергонапряженности 20-40 g и последующее его смешение с эпоксидной смолой в соотношении, мас. %: оксидный гексагональный ферромагнетик - 65-90, эпоксидная смола - 10-35, при этом порошок делят на N партий, каждую из которых в отдельности обрабатывают в механоактиваторе в течение времени, необходимого для достижения условия, когда статическая магнитная проницаемость порошка µ1≥µ2>µ3 …µN, где 1, 2, 3…N соответствует номеру слоя, затем слой, состоящий из порошка первой партии, смешанного с эпоксидной смолой, соединяют с металлической подложкой и к нему последовательно присоединяют следующие слои, состоящие из порошков других партий, также смешанных с эпоксидной смолой.
Недостатками этого технического решения являются его относительно высокие массо-габаритные характеристики и относительно большой коэффициент отражения.
Помимо указанных выше, известен поглотитель электромагнитных волн в виде радиопоглощающего покрытия [RU 2228565, C1, H01Q 17/00, 10.05.2004], включающего основу из, по меньшей мере, одного слоя переплетенных арамидных высокомодульных нитей с нанесенной на нити вакуумным напылением пленкой из гидрогенизированного углерода с вкрапленными в него ферромагнитными кластерами при следующем соотношении компонентов, мас. %: ферромагнитные кластеры 50-80, гидрогенизированный углерод - остальное.
Недостатком известного технического решения является анизотропия и нестабильность поглощающих свойств, обусловленные существованием зазоров между слоями.
Еще одним аналогом предложенного технического решения является поглотитель электромагнитных волн из радиопоглощающего материала [RU 2370866, C1, H01Q 17/00, 20.10.2009], включающего основу из, по меньшей мере, двух слоев переплетенных рядов нитей, скрепленных радиопрозрачным материалом, с нанесенной на каждый слой вакуумным распылением пленкой из гидрогенизированного углерода с вкрапленными в него частицами ферромагнитного материала, при этом направление переплетенных рядов нитей одного слоя тканого материала составляет с направлением переплетенных рядов нитей смежного слоя угол 60-120°, а содержание частиц ферромагнитного материала составляет от 5 мас. % в пленке, нанесенной на наружный слой переплетенных рядов нитей, до 85 мас. % в пленке, нанесенной на слой переплетенных рядов нитей, прилегающий к защищаемой поверхности.
Недостатком этого аналога является его относительно высокий коэффициент отражения и относительно узкий диапазон поглощаемых частот.
Наиболее близким по технической сущности к предложенному является поглотитель электромагнитных волн [RU 127255, Ul, H01Q 17/00, G21F 1/12, 16.01.2013], содержащий диэлектрическое связующее - пенополиуретан и поглощающее электромагнитное излучение электропроводящее углеродное волокно, при этом он изготовлен в виде плоских панелей, концентрация углеродного волокна в которых монотонно увеличивается от лицевой стороны к тыльной, причем, пределы изменения концентрации подобраны таким образом, что поглотитель имеет одновременно низкие значения коэффициентов отражения и пропускания падающего электромагнитного излучения в широкой полосе сверхвысокочастотного диапазона.
Особенностями этого материала является то, что толщина панелей изменяется в пределах от 10,0 мм до 20,0 мм, масса 1 м3 от 25,0 кг до 100,0 кг, а электрическое сопротивление углеродного волокна составляет 0,025…0,03 Ом/см.
Недостатками наиболее близкого технического решения являются его относительно малый коэффициент поглощения, относительно высокие массо-габаритные характеристики и относительно узкий диапазон поглощаемых частот.
Задачей предлагаемого изобретения является увеличение коэффициента поглощения для более широкого диапазона частот, включая терагерцевый диапазон частот, при одновременном уменьшении массо-габаритных характеристик.
Требуемый технический результат заключается в улучшении поглощающих свойств путем увеличения коэффициента поглощения электромагнитных волн в более широком диапазоне частот при одновременном снижении массо-габаритных характерстик.
Поставленная задача решается, а требуемый технический результат достигается тем, что в поглотителе электромагнитных волн, состоящем из слоев нетканого углеродосодержащего полимерного материала с малой плотностью, в которых концентрация углерода монотонно изменяется от слоя к слою, согласно изобретению, в качестве нетканого углеродосодержащего полимерного материала используют карбонизированный полиакрилонитрил, слои которого пропитаны суспензией, содержащей углеродные нанопористые микроволокна и многослойные углеродные наночастицы фуллероидного типа тороподобной формы, причем, слои полиакрилонитрила карбонизированы до концентрации углерода от 1% масс до 99,999% масс с возрастанием от поверхностных к центральному слою.
Кроме того, требуемый технический результат достигается тем, что поглотитель электромагнитных волн содержит от 2 до 10 слоев нетканого углеродосодержащего полимерного материала.
Кроме того, требуемый технический результат достигается тем, что в качестве суспензии используют смеси углеродных наночастиц, взвешенные в водной среде.
Кроме того, требуемый технический результат достигается тем, что в качестве суспензии используют смеси углеродных наночастиц, взвешенные в водно-спиртовой среде.
Кроме того, требуемый технический результат достигается тем, что в качестве углеродных наночастиц используют углеродные нано- и микроволокна с концентрацией от 1% масс до 10% масс, с диаметром 50-10 мкм, с длиной волокон 10-500 мкм.
Кроме того, требуемый технический результат достигается тем, что в качестве углеродных наночастиц используют углеродные нано- и микроволокна с концентрацией от 1% масс до 10% масс, с диаметром 2-200 нм с многослойными углеродными наночастицами фуллероидного типа тороподобной формы с сроотношеннием радиусов тора и радиусов образующих тор элементов в диапазоне от 3:1 до 10:1 с концентрацией от 0,5% масс до 12% масс.
Кроме того, требуемый технический результат достигается тем, что суспензия содержит добавку в виде микро- и/или наночастиц оксидов лантаноидов с концентрацией от 0,5 до 3%.
Предложенный поглотитель электромагнитных волн состоит из слоев нетканого углеродосодержащего полимерного материала с малой плотностью, в которых концентрация углерода монотонно изменяется от слоя к слою, при этом в качестве нетканого углеродосодержащего полимерного материала используют карбонизированный полиакрилонитрил, слои которого пропитаны суспензией, содержащей углеродные нанопористые микроволокна диаметром 5-10 мкм с длиной волокон 10-500 мкм и диаметром перпендикулярных оси микроволокон пор в диапазоне от 2 до 200 нм с концентрацией от 1% масс до 20% масс и многослойные углеродные наночастицы фуллероидного типа тороподобной формы с соотношением радиусов тора и радиусов образующих тор труб в диапазоне от 3:1 до 10:1 с концентрацией от 0,5% масс до 15% масс, причем, слои полиакрилонитрила карбонизированы до концентрации углерода от 1% масс до 99,999% масс с возрастанием от поверхностных к центральному слою.
В предложенном поглотителе электромагнитных волн содержится, преимущественно, от 2 до 10 слоев нетканого углеродосодержащего полимерного материала, в качестве суспензии используют смеси углеродных наночастиц, взвешенные в водной или в водно-спиртовой среде, в качестве углеродных наночастиц используют астралены и/или углеродные нано- и микроволокна, а в качестве добавки в суспензию вводят микро- и/или наночастицы оксидов лантаноидов с концентрацией от 0,5 до 3%.
Предложенный поглотитель электромагнитных волн на основе гибридных нанокомпозитных структур обладает низким коэффициентом отражения в широком спектре углов падения для диапазона частот электромагнитного излучения от десятков ГГц до десятков ТГц. Он обладает малым удельным весом и состоит из нескольких, преимущественно от двух до десяти, слоев нетканого углеродосодержащего полимерного материала, например полиакрилонитрила, с градиентом концентрации карбонизированных волокон от 1% масс до 99,99% масс в сторону ее возрастания от поверхностных к центральному слою.
Слои нетканого углеродосодержащего полимерного материала пропитаны суспензией гибридных нанокомпозитных структур, содержащей смесь углеродных нанопористых микроволокон с концентрацией от 1% масс до 10% масс, диаметром 5-10 мкм с длиной волокон от 10-500 мкм диаметром в диапазоне от 2 до 200 нм с многослойными углеродными наночастицами фуллероидного типа тороподобной формы с соотношением радиусов тора и радиусов образующих тор элементов в диапазоне от 3 к 1 до 10 к 1, с концентрацией от 05% масс до 12% масс.
Поглотитель электромагнитных волн содержит от 2 до 10 слоев нетканого углеродосодержащего полимерного материала, в качестве суспензии используют водные, либо водно-спиртовые смеси с распределенными в них взвешенными углеродными наночастицами и дополнительно взвешенными микрочастицами магнитомягких высокодисперсных порошков. Суспензия может дополнительно содержать микро- и/или наночастицы оксидов лантаноидов.
Используется поглотитель электромагнитных волн следующим образом.
Мягкий и легкий окисленный карбонизированный нетканый полиакрилонитрил изгибается по форме защищаемой отражающей поверхности и приклеивается к ней полимерными, либо неорганическими клеями. При этом допускается защита внешней поверхности поглотителя радиопрозрачными защитными материалами.
Предложенный состав поглотителя обеспечивает существенное увеличение коэффициента поглощения для более широкого диапазона частот, включая гигагерцевый и терагерцевый диапазоны частот, относительно наиболее близкого технического решения. Это обусловлено тем, что гибридная смесь углеродных нанопоритых микроволокон с углеродными полиэдральными наночастицами фуллероидного типа тороподобной формы в указанных диапазонах концентраций обладает чрезвычайно высокими коэффициентами поглощения электромагнитных волн (до нескольких десятков см-1) в широком диапазоне частот - от десятков гигагерц до единиц терагерц.
Изложенное выше подтверждается результатами экспериментальных исследований, приведенных в таблице.
Градиентная концентрация наночастиц создается путем последовательной пропитки окисленных нетканых полиакрилонитрильных материалов суспензиями со снижающейся к поверхности концентрацией наночастиц и повышением подвижности и глубины пропитки при увеличении соотношения спирт-вода в пользу первого до уровня 80:20.
Таким образом, благодаря усовершенствованию известного технического решения, достигается требуемый технический результат, заключающийся в улучшении поглощающих свойств путем увеличения коэффициента поглощения электромагнитных волн в более широком диапазоне частот при одновременном снижении массо-габаритных характеристик.
название | год | авторы | номер документа |
---|---|---|---|
РАДИОПОГЛОЩАЮЩИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ СТРОИТЕЛЬНОГО НАЗНАЧЕНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2017 |
|
RU2655187C1 |
НАНОПОРИСТОЕ УГЛЕРОДНОЕ МИКРОВОЛОКНО ДЛЯ СОЗДАНИЯ РАДИОПОГЛОЩАЮЩИХ МАТЕРИАЛОВ | 2014 |
|
RU2570794C1 |
НАНОКОМПОЗИТНЫЙ МАТЕРИАЛ НА ОСНОВЕ ПОЛИМЕРНЫХ СВЯЗУЮЩИХ | 2009 |
|
RU2437902C2 |
НАНОКОМПОЗИТНЫЙ МАТЕРИАЛ НА ОСНОВЕ МИНЕРАЛЬНЫХ ВЯЖУЩИХ | 2009 |
|
RU2436749C2 |
НАНОКОМПОЗИТНЫЙ МАТЕРИАЛ НА ОСНОВЕ МИНЕРАЛЬНЫХ ВЯЖУЩИХ | 2013 |
|
RU2538410C1 |
НЕТКАНЫЙ МНОГОСЛОЙНЫЙ МАТЕРИАЛ ДЛЯ ПОГЛОЩЕНИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ В СВЧ ДИАПАЗОНЕ | 2016 |
|
RU2647380C2 |
СТРОИТЕЛЬНЫЙ КОНСТРУКЦИОННЫЙ ЭЛЕМЕНТ | 2017 |
|
RU2683836C1 |
Полиэфирный нетканый материал, поглощающий в СВЧ-диапазоне | 2018 |
|
RU2689624C1 |
МОДИФИЦИРОВАННОЕ ГАЛЬВАНИЧЕСКОЕ СЕРЕБРЯНОЕ ПОКРЫТИЕ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2014 |
|
RU2551327C1 |
Радиопоглощающий композитный материал на основе многослойных углеродных нанотрубок, модифицированных ферритовыми наночастицами | 2019 |
|
RU2747932C2 |
Использование: для обеспечения электромагнитной совместимости радиоэлектронных средств, защиты от радиоизлучения и снижения радиолокационной заметности различных объектов. Сущность изобретения заключается в том, что поглотитель электромагнитных волн на основе гибридных нанокомпозитных структур состоит из слоев нетканого углеродосодержащего полимерного материала с малой плотностью, в которых концентрация углерода монотонно изменяется от слоя к слою, в качестве нетканого углеродосодержащего полимерного материала используют карбонизированный полиакрилонитрил, слои которого пропитаны суспензией, содержащей углеродные нанопористые микроволокна и многослойные углеродные наночастицы фуллероидного типа тороподобной формы, причем слои полиакрилонитрила карбонизированы до концентрации углерода от 1 мас.% до 99,999 мас.% с возрастанием от поверхностных к центральному слою. Технический результат: обеспечение возможности улучшения поглощающих свойств. 6 з.п. ф-лы, 1 табл.
1. Поглотитель электромагнитных волн на основе гибридных нанокомпозитных структур, состоящий из слоев нетканого углеродосодержащего полимерного материала с малой плотностью, в которых концентрация углерода монотонно изменяется от слоя к слою, отличающийся тем, что в качестве нетканого углеродосодержащего полимерного материала используют карбонизированный полиакрилонитрил, слои которого пропитаны суспензией, содержащей углеродные нанопористые микроволокна и многослойные углеродные наночастицы фуллероидного типа тороподобной формы, причем слои полиакрилонитрила карбонизированы до концентрации углерода от 1 мас.% до 99,999 мас.% с возрастанием от поверхностных к центральному слою.
2. Поглотитель по п. 1, отличающийся тем, что он содержит от 2 до 10 слоев нетканого углеродосодержащего полимерного материала.
3. Поглотитель по п. 1, отличающийся тем, что в качестве суспензии используют смеси углеродных наночастиц, взвешенные в водной среде.
4. Поглотитель по п. 1, отличающийся тем, что в качестве суспензии используют смеси углеродных наночастиц, взвешенные в водно-спиртовой среде.
5. Поглотитель по п. 1, отличающийся тем, что в качестве углеродных наночастиц используют углеродные нано- и микроволокна с концентрацией от 1 мас.% до 10 мас.%, с диаметром 50-10 мкм, с длиной волокон 10-500 мкм.
6. Поглотитель по п. 1, отличающийся тем, что в качестве углеродных наночастиц используют углеродные нано- и микроволокна с концентрацией от 1 мас.% до 10 мас.%, с диаметром 2-200 нм с многослойными углеродными наночастицами фуллероидного типа тороподобной формы с соотношением радиусов тора и радиусов образующих тор элементов в диапазоне от 3:1 до 10:1 с концентрацией от 0,5 мас.% до 12 мас.%.
7. Поглотитель по п. 1, отличающийся тем, что суспензия содержит добавку в виде микро- и/или наночастиц оксидов лантаноидов с концентрацией от 0,5 до 3%.
US 20050008845 A1, 13.01.2005 | |||
Способ получения кремнийорганических мономеров и полимеров на их основе | 1951 |
|
SU127255A1 |
ПОГЛОТИТЕЛЬ ЭЛЕКТРОМАГНИТНЫХ ВОЛН | 2010 |
|
RU2414029C1 |
РАДИОПОГЛОЩАЮЩИЙ МАТЕРИАЛ | 2011 |
|
RU2482149C1 |
JP 2000232296 A, 22.08.2000 | |||
WO 2014076645 A1, 22.05.2014 . |
Авторы
Даты
2016-08-20—Публикация
2015-05-07—Подача