СПОСОБ ИСПЫТАНИЙ БОЕПРИПАСОВ Российский патент 2016 года по МПК F42B35/00 

Описание патента на изобретение RU2596552C2

Изобретение относится к машиностроению, а именно к испытательной технике, и может быть использовано при проектировании и отработке новых образцов боеприпасов.

Известен способ наземных испытания боеприпасов на основе физического моделирования, описанный в работе «Теоретические основы испытаний и экспериментальная отработка сложных технических систем» Л.Н. Александровской, В.И. Круглова, А.Г. Кузнецова, - М.: Логос, 2003, стр. 129-133, включающий замену при отработке системы питания двигателя совместно с турбонасосным агрегатом камеры сгорания на физическую модель.

Недостатком данного способа является то, что при этом используют реальные основные несущие элементы (корпусы, отсеки, баки, фермы и т.д.), что значительно повышает стоимость и увеличивает сроки проведения испытаний.

Наиболее близким и выбранным в качестве прототипа является способ испытаний боеприпасов, описанный в патенте РФ №2388992, опубл. 10.05.2010 г., МПК F42B 35/00, под названием «Способ испытаний боеприпасов и их узлов», включающий механическое и/или климатическое воздействие на боеприпас, осуществление последующей оценки его состояния по совокупности состояний всех последовательно испытанных фрагментов и боеприпаса в целом.

К недостаткам известного способа можно отнести:

- длительность и многооперационность проведения испытаний, связанные с необходимостью неоднократных переборок испытываемого изделия для замены узлов;

- высокая стоимость проведения испытаний вследствие использования реальных узлов и элементов.

Задачей заявляемого изобретения является создание способа испытаний боеприпасов, обеспечивающего сокращение временных и финансовых затрат с обеспечением повышения безопасности, качества и эффективности испытаний.

Это достигается тем, что в способе испытаний боеприпасов, имеющих многослойное композиционное покрытие и силовое основание из высоколегированной стали, включающем механическое и/или климатическое воздействие на боеприпас и осуществление последующей оценки его состояния по совокупности состояния всех составных элементов и боеприпаса в целом, согласно изобретению воздействие осуществляют на физическую модель реального корпуса боеприпаса в соответствии с выбранным видом испытаний, при этом используют упомянутую физическую модель без наружного многослойного композиционного покрытия реального корпуса и с силовым основанием из углеродистой стали, соответствующим силовому основанию реального корпуса по толщине и внутренним посадочным поверхностям, а на наружной поверхности физической модели размещают элементы для установки испытательной оснастки и грузов для обеспечения заданных массо-центровочных характеристик.

Кроме того, используют физическую модель с силовым основанием из углеродистой стали марок сталь 10 или сталь 20.

Технический результат, который позволяет решить поставленную задачу, заключается в том, что удалось повысить качество за счет возможности увеличения количества испытаний и эффективность испытаний за счет выбора физической модели, удовлетворяющей требованиям конкретных испытаний и обеспечить значительное сокращение финансовых затрат за счет исключения или замены дорогостоящего и технологически сложного теплозащитного многослойного композиционного покрытия на более доступные и дешевые материалы.

Наличие в заявляемом изобретении признаков, отличающих его от прототипа, позволяет считать его соответствующим условию «новизна».

Новые признаки способа (воздействие осуществляют на физическую модель реального корпуса боеприпаса в соответствии с выбранным видом испытаний, при этом используют упомянутую физическую модель без наружного многослойного композиционного покрытия реального корпуса и с силовым основанием из углеродистой стали, соответствующим силовому основанию реального корпуса по толщине и внутренним посадочным поверхностям, а на наружной поверхности физической модели размещают элементы для установки испытательной оснастки и грузов для обеспечения заданных массо-центровочных характеристик) не выявлены в технических решениях аналогичного назначения. На этом основании можно сделать вывод о соответствии заявляемого изобретения условию «изобретательский уровень».

На фиг. 1 приведен алгоритм реализации способа испытаний боеприпасов.

На фиг. 2 приведен пример реализации способа испытаний гипотетического боеприпаса.

На чертежах введены следующие обозначения:

1 - корпус боеприпаса;

2 - силовое основание корпуса;

3 - составные части боеприпаса;

4 - наружное многослойное покрытие;

5 - элементы внешнего облика боеприпаса.

Реализация данного способа осуществляется следующим образом (фиг. 1):

1) анализ целей и задач всех наземных испытаний;

2) определение требований к модели корпуса для каждого типа испытаний;

3) анализ конструкции реального корпуса и определение путей упрощения конструкции с целью снижения стоимости, сроков изготовления и улучшения технологичности изготовления;

4) выбор модели корпуса, удовлетворяющей всем определенным требованиям;

5) проведение испытаний;

6) оценка состояния физической модели боеприпаса по совокупности состояния всех составных элементов.

Предлагаемое изобретение осуществляется следующим образом. Рассмотрим пример с гипотетическим боеприпасом, корпус 1 которого состоит из силового основания 2 с элементами для внутреннего закрепления составных частей 3, наружного многослойного композиционного покрытия 4 и ряда элементов 5, определяющих внешний облик боеприпаса и его характеристики (фиг. 2).

Анализ объема наземных испытаний позволяет выявить конкретные типы испытаний, в которых возможно использование модели реального корпуса гипотетического боеприпаса, и определенные требования к этой модели, например:

- для климатических испытаний модель корпуса должна иметь силовое основание 2, соответствующее реальному основанию по внутренним посадочным поверхностям, материалам, герметичности;

- для вибрационных испытаний модель корпуса должна иметь силовое основание 2, соответствующее реальному основанию по внутренним посадочным поверхностям, позволяющее закреплять на наружной поверхности элементы испытательной оснастки, достаточной по прочностным характеристикам для вибрационных нагрузок, соответствующее реальному корпусу по массо-центровочным характеристикам;

- для электрических испытаний модель корпуса должна иметь силовое основание 2, соответствующее реальному основанию по внутренним посадочным поверхностям и толщине.

Таким образом можно выделить конкретные виды наземных испытаний, в которых можно использовать модель корпуса.

Далее, исходя из требований к модели корпуса, определяем конструкцию модели корпуса:

1) исключаем наружное дорогостоящее композиционное покрытие 4 и элементы 5;

2) силовое основание 2 выбирают соответствующим реальному основанию по внутренним посадочным поверхностям и толщине, при этом дорогостоящую высоколегированную сталь заменяют обычной углеродистой сталью, например сталью 10, сталью 20 и т.д.;

3) на наружной поверхности предусматривают аналогичные элементы для закрепления:

- грузы для обеспечения массо-центровочных характеристик;

- элементы для закрепления испытательной оснастки.

Таким образом определили модель корпуса, исключив наружное многослойное композиционное покрытие и ряд элементов, определяющих внешний облик боеприпаса и его характеристики, тем самым на порядок сократили стоимость модели корпуса по отношению к реальному корпусу.

После проведения испытаний боеприпаса в составе модели реального корпуса проводится оценка его состояния по совокупности состояния всех составных элементов.

Заявляемое изобретение позволит существенно сократить время проведения наземной отработки, повысить надежность срабатывания. Применение предлагаемого технического решения значительно сокращает стоимость проведения наземной отработки испытаний.

Для заявленного изобретения в том виде, как оно охарактеризовано в формуле изобретения, подтверждена возможность осуществления способа испытаний боеприпасов и способность обеспечения достижения усматриваемого заявителем технического результата. Следовательно, заявленное изобретение соответствует условию «промышленная применимость».

Похожие патенты RU2596552C2

название год авторы номер документа
СПОСОБ НАГРУЖЕНИЯ КОНСТРУКЦИЙ ПРИ ИСПЫТАНИЯХ НА ПРОЧНОСТЬ 2003
  • Европейцев А.А.
  • Мажирин В.Ф.
  • Подзоров В.Н.
RU2249804C2
СТЕНД ДЛЯ ИСПЫТАНИЙ НА ПРОЧНОСТЬ ГОЛОВНОГО ОБТЕКАТЕЛЯ 2004
  • Подзоров Валерий Николаевич
  • Европейцев Александр Анатольевич
  • Мажирин Василий Федорович
  • Качкин Анатолий Александрович
RU2293956C2
ЛОПАСТЬ АЭРОДИНАМИЧЕСКОЙ МОДЕЛИ ВОЗДУШНОГО ВИНТА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2010
  • Козлов Владимир Алексеевич
  • Евдокимов Юрий Юрьевич
  • Ходунов Сергей Владимирович
  • Усов Александр Викторович
RU2444716C1
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВЫХ ПОЛЕЙ ЭЛЕКТРОРАДИОИЗДЕЛИЙ 2013
  • Сунцов Сергей Борисович
  • Макуха Александр Васильевич
  • Деревянко Валерий Александрович
  • Морозов Егор Александрович
  • Смолякова Екатерина Федоровна
RU2564053C2
Лопасть воздушного винта многоконтурной конструкции 2021
  • Селеменев Сергей Витальевич
  • Бурцев Борис Николаевич
RU2767574C1
Способ теплопрочностных испытаний керамических обтекателей 2019
  • Райлян Василий Семёнович
  • Русин Михаил Юрьевич
  • Антонов Владимир Викторович
  • Терехин Александр Васильевич
  • Черемных Алексей Валерьевич
RU2712197C1
Способ исследования и оптимизации компоновки летательного аппарата и модель для его осуществления 2020
  • Бондарев Александр Олегович
  • Кудрявцев Олег Валентинович
  • Корнушенко Александр Вячеславич
  • Курсаков Иннокентий Александрович
  • Стрельцов Евгений Владимирович
  • Усов Александр Викторович
RU2761543C1
ЛОПАСТЬ НЕСУЩЕГО ВИНТА ВЕРТОЛЕТА И СПОСОБ ИЗГОТОВЛЕНИЯ ЛОПАСТИ ИЗ КОМПОЗИЦИОННОГО МАТЕРИАЛА 2013
  • Губарев Борис Анатольевич
  • Шегас Сергей Леонидович
  • Каюмов Сергей Владиславович
RU2541574C1
СТЕНД ДЛЯ МОДЕЛИРОВАНИЯ СИСТЕМЫ ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА 2007
  • Пушкин Валерий Иванович
  • Гуртов Александр Сергеевич
  • Миненко Сергей Иванович
  • Фомакин Виктор Николаевич
  • Петренко Юрий Дмитриевич
RU2349518C1
Стенд для испытаний модели жидкостной противообледенительной системы летательного аппарата 2024
  • Дуров Дмитрий Сергеевич
  • Сафоклов Борис Борисович
  • Ряпухин Анатолий Вячеславович
  • Зюбан Татьяна Анатольевна
  • Носова Ольга Васильевна
RU2824830C1

Иллюстрации к изобретению RU 2 596 552 C2

Реферат патента 2016 года СПОСОБ ИСПЫТАНИЙ БОЕПРИПАСОВ

Изобретение относится к испытательной технике и может быть использовано при проектировании и отработке новых образцов боеприпасов. Способ включает механическое и/или климатическое воздействие на боеприпас и осуществление последующей оценки его состояния по совокупности состояния всех составных элементов и боеприпаса в целом. При этом воздействие осуществляют на физическую модель реального корпуса боеприпаса без наружного многослойного композиционного покрытия реального корпуса и с силовым основанием из углеродистой стали, соответствующим силовому основанию реального корпуса по толщине и внутренним посадочным поверхностям, а на наружной поверхности физической модели размещают элементы для установки испытательной оснастки и грузов для обеспечения заданных массо-центровочных характеристик. Использование изобретения позволяет существенно сократить время проведения наземной отработки боеприпасов и значительно сократить ее стоимость. 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 596 552 C2

1. Способ испытаний боеприпасов, имеющих многослойное композиционное покрытие и силовое основание из высоколегированной стали, включающий механическое и/или климатическое воздействие на боеприпас и осуществление последующей оценки его состояния по совокупности состояния всех составных элементов и боеприпаса в целом, отличающийся тем, что воздействие осуществляют на физическую модель реального корпуса боеприпаса в соответствии с выбранным видом испытаний, при этом используют упомянутую физическую модель без наружного многослойного композиционного покрытия реального корпуса и с силовым основанием из углеродистой стали, соответствующим силовому основанию реального корпуса по толщине и внутренним посадочным поверхностям, а на наружной поверхности физической модели размещают элементы для установки испытательной оснастки и грузов для обеспечения заданных массо-центровочных характеристик.

2. Способ испытаний боеприпасов по п. 1, отличающийся тем, что используют физическую модель с силовым основанием из углеродистой стали марок - сталь 10 или сталь 20.

Документы, цитированные в отчете о поиске Патент 2016 года RU2596552C2

СПОСОБ ИСПЫТАНИЙ БОЕПРИПАСОВ И ИХ УЗЛОВ 2008
  • Завальнюк Анатолий Гаврилович
  • Колотилин Владимир Иванович
  • Осин Анатолий Иванович
RU2388992C2
СПОСОБ СТЕНДОВОГО ИСПЫТАНИЯ КАТАПУЛЬТНОГО УСТРОЙСТВА РАКЕТЫ ПРИ ВЕРТИКАЛЬНОМ ЗАПУСКЕ 2009
  • Никитин Василий Тихонович
  • Козьяков Алексей Васильевич
  • Кислицын Алексей Анатольевич
  • Молчанов Владимир Федорович
  • Куценко Геннадий Васильевич
  • Поник Анатолий Никитович
  • Овчинников Василий Афанасьевич
  • Баталов Владимир Георгиевич
RU2395059C1
УСТРОЙСТВО ДЛЯ ЭКСПЕРИМЕНТАЛЬНОЙ ОТРАБОТКИ РАЗДЕЛЯЮЩИХСЯ РЕАКТИВНЫХ СНАРЯДОВ 2005
  • Завьялов Николай Сергеевич
  • Козлов Валерий Иванович
  • Редько Александр Александрович
  • Теплов Владимир Михайлович
RU2285892C1
МАКЕТ БОЕПРИПАСА ДЛЯ ИСПЫТАНИЯ МАТЕРИАЛОВ И ВЗРЫВЧАТЫХ ВЕЩЕСТВ НА МЕТАТЕЛЬНО-ДРОБЯЩЕЕ ДЕЙСТВИЕ 1992
  • Одинцов В.А.
RU2025646C1
СПОСОБ МОДЕЛИРОВАНИЯ ПРОЦЕССА ОТДЕЛЕНИЯ РАКЕТЫ ОТ АВИАЦИОННОГО НОСИТЕЛЯ ПРИ ПРОВЕДЕНИИ НАЗЕМНЫХ ИСПЫТАНИЙ 2008
  • Васильев Николай Анатольевич
  • Карпов Владимир Дмитриевич
  • Котельникова Ирина Александровна
RU2385445C1
KR 20110126770 A, 24.11.2011.

RU 2 596 552 C2

Авторы

Черница Олег Анатольевич

Воробьев Константин Александрович

Андреев Владимир Викторович

Даты

2016-09-10Публикация

2014-09-15Подача