СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВЫХ ПОЛЕЙ ЭЛЕКТРОРАДИОИЗДЕЛИЙ Российский патент 2015 года по МПК G01N25/72 G01R31/00 G01J5/60 

Описание патента на изобретение RU2564053C2

Изобретение относится к космической технике, в частности к способам наземных тепловакуумных испытаний бортовой радиоэлектронной аппаратуры (РЭА) негерметичных космических аппаратов (КА) при диагностировании ее тепловых режимов в условиях эксплуатации, имитирующих реальные.

Существуют аналогичные методики и способы измерения параметров физических полей и проведения испытаний.

Известен способ измерения параметров физических полей (патент на изобретение №2066466, РФ). Изобретение относится к способам измерения параметров физических полей, предпочтительно динамических, по характеру, например сейсмических, магнитных, тепловых и т.п. Сущность изобретения: формируют основную измерительную сеть. Для этого в пределах измерительного участка двумя группами размещают распределенные датчики.

Известен способ измерения коэффициента температуропроводности материала и устройство для его осуществления (патент на изобретение №2072516, РФ). Изобретение относится к бесконтактным методам контроля теплофизических характеристик материалов и может быть использовано при производстве изделий электронной техники. Сущность заключается в том, что исследуемый образец облучают сфокусированным импульсным лазерным излучением и с помощью ИК-фотодиода регистрируют тепловое излучение локально нагретой области образца.

В настоящее время применяется методика тепловакуумных испытаний РЭА негерметичных КА, которая основана на ГОСТ РВ 20.57.306-98 "Аппаратура, приборы, устройства и оборудование военного назначения. Общие требования, методы контроля и испытаний. Методы испытаний на соответствие требованиям по устойчивости к климатическим воздействиям". Методика предусматривает осуществление контроля температуры с помощью термодатчиков, установленных в непосредственной близости от электрорадиоизделий (ЭРИ). Аналогичная методика применяется зарубежными фирмами, создающими РЭА космического назначения.

Эта методика принята за аналог, наиболее близкий к изобретению (прототип).

Недостатком данной методики и известных способов контроля параметров физических полей является то, что осуществить контроль температуры и тепловых режимов всех критичных ЭРИ с помощью термодатчиков невозможно из-за их большого количества (несколько десятков на каждой плате и несколько сотен в приборе), а термодатчики и подходящие к ним медные провода вносят существенные искажения в тепловое поле РЭА. Таким образом, с помощью термодатчиков обеспечивается контроль температуры 3-5 ЭРИ на плате и не более 15-20 ЭРИ в приборе. Кроме того, из-за отсутствия в настоящее время необходимого программно-методического обеспечения и испытательного оборудования невозможно проводить динамический контроль температуры ЭРИ во всех возможных режимах функционирования РЭА. Все это не позволяет получить полное и однозначное представление о тепловых режимах ЭРИ.

Цель изобретения - диагностирование тепловых режимов ЭРИ и блоков бортовой радиоэлектронной аппаратуры в условиях эксплуатации, имитирующих реальные.

Указанная цель достигается за счет использования интегрированных программных средств и стенда тепловакуумных испытаний, оснащенного системой имитации тепловых воздействий на радиоэлектронную аппаратуру в условиях открытого космоса и системой теплового диагностирования радиоэлектронной аппаратуры. При этом измерение температуры всей поверхности панели или блока радиоэлектронной аппаратуры с установленными электронными компонентами осуществляют тепловизионной измерительной системой через иллюминатор, обладающий высокой степенью пропускания излучения в инфракрасном диапазоне, с записью информации в цифровом виде. Температуру поверхности блока измеряют с помощью термодатчиков вблизи контрольных точек.

Суть изобретения.

Техническая реализация изобретения: испытуемая РЭА (узел или прибор) устанавливается на термостабилизированной платформе в вакуумной камере испытательного стенда, в которой обеспечивается высокая степень достоверности имитации тепловакуумных воздействий на РЭА при ее функционировании. Температура платформы задается и поддерживается постоянной в широких пределах. Измерение температуры поверхности панели осуществляется тепловизионной измерительной системой через инфракрасный иллюминатор из BaF2 с записью информации на компьютере. Одновременно с помощью термодатчиков контролируется температура контрольных точек поверхности блока.

Методологическая реализация изобретения: в общем случае тепловизор регистрирует тепловой поток с поверхности радиоэлектронной платы в виде

W=τε(x,y)WРЭА,

где τ - коэффициент пропускания иллюминатора;

ε(x,y) - поле коэффициентов излучения поверхности блока;

WРЭА - мощность теплового потока с поверхности РЭА, Вт.

При сравнении температуры, измеренной тепловизором, и температуры, измеренной термодатчиками, вычисляется ε(x,y), а по известному ε(x,y), полученному из термоизображения тепловизора, вычисляется реальная температура. В процессе испытаний проводится контроль тепловых полей внешних поверхностей РЭА, а также контроль температуры в локальных точках, недоступных для тепловизионного контроля. Интегрированные программные средства испытательного стенда позволяют проводить сравнение измеренных тепловых полей РЭА с результатами тепловых расчетов. Испытания проводят последовательно по двум уровням: "узел" и "прибор". На уровне "узел" определяются тепловые режимы ЭРИ в диапазоне рабочих температур посадочного места узла, уточняются параметры математической модели узла, выявляются недостатки компоновки, выявляются дефекты сборки и монтажа, формируется "тепловой паспорт" узла. На уровне "прибор" проводят контроль тепловых полей наружных поверхностей прибора, измерения температуры в контрольных точках внутри прибора, уточняется тепловая модель прибора, проводится расчет тепловых полей узлов с учетом граничных условий установки их в приборе, формируется «тепловой паспорт» прибора.

На этапе приемо-сдаточных испытаний штатных узлов проводится сравнение термограмм узлов с термограммами "тепловых паспортов" и отбраковка дефектных узлов, а также проводится сравнение термограмм поверхностей прибора с термограммами "теплового паспорта" и таким образом контролируется качество сборки прибора.

Обеспечена возможность проведения контроля тепловых режимов всех ЭРИ, смонтированных на печатной плате, тепловых режимов блока и РЭА в целом. На основании сравнений термограмм эталонных блоков и приборов обеспечена возможность выявления дефектной продукции.

Технический результат изобретения заключается в расширении технологических возможностей, повышении точности диагностирования тепловых режимов ЭРИ, блоков радиоэлектронной аппаратуры и радиоэлектронной аппаратуры, обеспечении контроля тепловых режимов каждого ЭРИ, установленного на поверхности блока.

Сравнительный анализ заявляемого решения с другими техническими решениями в данной области техники не позволил выявить признаки, сходные с совокупностью признаков заявляемого технического решения.

Похожие патенты RU2564053C2

название год авторы номер документа
СПОСОБ ДЕКОРПУСИРОВАНИЯ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ 2014
  • Анашин Василий Сергеевич
  • Никольская Татьяна Владимировна
  • Сурнин Владимир Николаевич
  • Яскин Юрий Сергеевич
RU2572290C1
СТЕНД ДЛЯ ТЕПЛОВЫХ ИСПЫТАНИЙ РАДИОЭЛЕКТРОННЫХ УСТРОЙСТВ КОСМИЧЕСКИХ АППАРАТОВ 2014
  • Егоров Константин Владиленович
  • Алексеев Владимир Антонович
  • Копылов Виктор Захарович
  • Карабан Леонид Васильевич
RU2553411C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЗОН КОНЦЕНТРАЦИИ НАПРЯЖЕНИЙ В СТРОИТЕЛЬНЫХ КОНСТРУКЦИЯХ 2006
  • Мирсаяпов Илшат Талгатович
RU2315271C1
СПОСОБ МОНТАЖА ЭЛЕКТРОРАДИОИЗДЕЛИЙ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ 2021
  • Луконин Николай Владимирович
  • Тукаль Сергей Константинович
  • Толмачёв Сергей Анатольевич
  • Козырев Константин Сергеевич
  • Матюшенко Марина Викторовна
  • Самарина Анна Николаевна
RU2781436C1
СПОСОБ ПРОВЕДЕНИЯ АНАЛИЗА ДОЛГОВЕЧНОСТИ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ 2014
  • Сунцов Сергей Борисович
  • Морозов Егор Александрович
  • Карабан Вадим Михайлович
  • Школьный Вадим Николаевич
  • Кочура Сергей Григорьевич
RU2573140C2
СПОСОБ И УСТРОЙСТВО ДЛЯ КОМПЬЮТЕРНО-ТЕПЛОВИЗИОННОЙ ДИАГНОСТИКИ В СТОМАТОЛОГИИ 2005
  • Болотин Николай Борисович
  • Соловьев Владимир Анатольевич
RU2302194C1
СПОСОБ И УСТРОЙСТВО ДЛЯ КОМПЬЮТЕРНОЙ ТЕПЛОВИЗИОННОЙ ДИАГНОСТИКИ В СТОМАТОЛОГИИ 2005
  • Соловьев Владимир Анатольевич
  • Болотин Николай Борисович
RU2282392C1
СПОСОБ РАННЕЙ ДИАГНОСТИКИ ОПУХОЛЕВЫХ ЗАБОЛЕВАНИЙ МОЛОЧНОЙ ЖЕЛЕЗЫ 2004
  • Белошенко Виктор Александрович
  • Варюхин Виктор Николаевич
  • Дорошев Валентин Давыдович
  • Карначев Александр Сергеевич
  • Приходченко Владимир Васильевич
  • Приходченко Олег Владимирович
RU2276965C2
СПОСОБ МОНИТОРИНГА ТЕХНИЧЕСКОГО СОСТОЯНИЯ ТРУБОПРОВОДОВ НАДЗЕМНОЙ ПРОКЛАДКИ В УСЛОВИЯХ ВЕЧНОЙ МЕРЗЛОТЫ 2015
  • Ревель-Муроз Павел Александрович
  • Могильнер Леонид Юрьевич
  • Татауров Сергей Борисович
RU2571497C1
СПОСОБ СОВМЕСТНОГО МОНТАЖА ЭЛЕКТРОРАДИОИЗДЕЛИЙ И ПЕЧАТНЫХ ПЛАТ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ 2019
  • Луконин Николай Владимирович
  • Толмачев Сергей Анатольевич
  • Рунова Галина Николаевна
  • Ивлев Александр Леонидович
RU2729606C1

Реферат патента 2015 года СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВЫХ ПОЛЕЙ ЭЛЕКТРОРАДИОИЗДЕЛИЙ

Изобретение относится к космической технике и может быть использовано при наземных тепловакуумных испытаниях бортовой радиоэлектронной аппаратуры (РЭА) негерметичных космических аппаратов (КА). Предложен способ измерения тепловых полей электрорадиоизделий, включающий использование интегрированных программных средств и стенда тепловакуумных испытаний. Температуру поверхности прибора измеряют с помощью термодатчиков вблизи контрольных точек. Одновременно измеряют температуру всей поверхности панели или блока радиоэлектронной аппаратуры с установленными электронными компонентами с помощью тепловизионной измерительной системы через иллюминатор, обладающий высокой степенью пропускания излучения в инфракрасном диапазоне, с записью информации в цифровом виде. Технический результат - повышение точности получаемых данных.

Формула изобретения RU 2 564 053 C2

Способ измерения тепловых полей электрорадиоизделий, включающий использование интегрированных программных средств и стенда тепловакуумных испытаний, оснащенного системой имитации тепловых воздействий на радиоэлектронную аппаратуру в условиях открытого космоса и системой теплового диагностирования радиоэлектронной аппаратуры, при этом температуру поверхности прибора измеряют с помощью термодатчиков вблизи контрольных точек, отличающийся тем, что одновременно измеряют температуру всей поверхности панели или блока радиоэлектронной аппаратуры с установленными электронными компонентами с помощью тепловизионной измерительной системы через иллюминатор, обладающий высокой степенью пропускания излучения в инфракрасном диапазоне, с записью информации в цифровом виде.

Документы, цитированные в отчете о поиске Патент 2015 года RU2564053C2

Прибор для промывания газов 1922
  • Блаженнов И.В.
SU20A1
Паровозный золотник (байпас) 1921
  • Трофимов И.О.
SU153A1
ТЕПЛОВОЙ СПОСОБ КОНТРОЛЯ ОСТАТОЧНОГО РЕСУРСА ЭЛЕКТРООБОРУДОВАНИЯ 2005
  • Будадин Олег Николаевич
  • Абрамова Елена Вячеславовна
  • Сучков Виталий Иванович
  • Троицкий-Марков Роман Тимурович
  • Ким-Серебряков Дмитрий Владимирович
RU2287809C1
WO 0040985 A1, 13.07.2000
WO 2013039024 A1, 21.03.2013

RU 2 564 053 C2

Авторы

Сунцов Сергей Борисович

Макуха Александр Васильевич

Деревянко Валерий Александрович

Морозов Егор Александрович

Смолякова Екатерина Федоровна

Даты

2015-09-27Публикация

2013-08-27Подача