СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ГРУНТА Российский патент 2016 года по МПК E21B47/06 E02D1/00 G01K7/02 

Описание патента на изобретение RU2597339C1

Способ относится к термометрии, а именно к полевому определению температуры грунтов, где требуется получить конкретные данные о температуре мерзлых, промерзающих и протаивающих грунтов.

Известен способ в виде устройства для исследования скважин градиент-термометром (Позин Л.З. Исследование скважин градиент-термометром. Разведочная и промысловая геофизика. - М., Гостоптехиздат, 1969). Устройство содержит два одинаковых последовательно соединенных и размещенных вдоль оси скважины на заданном расстоянии термочувствительных резистора, первый и второй.

Недостатком такого способа является наличие балансировочных резисторов, нарушающих баланс при значительных изменениях температуры, и регистрация лишь одной составляющей поля температуры - вдоль оси скважины.

Известен способ в виде устройства для теплового каротажа скважин, содержащее три одинаковых размещенных вдоль оси скважины на заданном расстоянии термочувствительных датчика для измерения второй разности температуры, первый, второй и третий (Патент №2314416 «Устройство для теплового каротажа скважин»).

Недостатками данного способа является узкая область применения, низкая точность измерения, избыточность оборудования, использование косвенных методов измерения одной зависимости от другой.

Известен способ в виде устройства для мониторинга температур в протяженном объекте, содержащее термоподвеску, состоящую из последовательно расположенных датчиков температуры, размещенных в защитном кожухе небольшого диаметра, управляющий микроконтроллер, преобразователь сигналов, энергонезависимое запоминающее устройство, часы реального времени, решающее устройство, блок задания начальных параметров, встроенный источник питания, и интерфейс передачи данных, а также снабженное уплотнением, предназначенным для исключения попадания окружающего воздуха в скважину во время проведения измерений. Кожух выполнен в виде съемной полимерной толстостенной оболочки самонесущего кабеля (Патент №75692 «Устройство для мониторинга температур в протяженном объекте»).

Недостатком данного способа является большое время термической реакции из-за наличия полимерной толстостенной оболочки, в которой расположена термоподвеска, а также низкая герметичность термоподвески при отсутствии полимерной толстостенной оболочки, которая приводит к отказу устройства в условиях повышенной пыли и влаги.

Наиболее близким техническим решением является способ в виде измерения температуры с помощью термокосы, которая опускается в термометрическую скважину и содержит последовательно расположенные датчики температуры, соединенные между собой гибким кабелем, обеспечивающим электрическое соединение датчиков температуры, разъем для подключения к устройству считывания, хранения, обработки и отображения данных, при этом каждый датчик температуры заключен в защитный корпус (Патент №2448335 «Термокоса»).

Недостатком данного способа является наличие конвекции в скважине при проведении измерений.

Кроме того, вышеуказанные способы позволяют измерять температуру воздуха в скважине, а не температуру грунта, что влияет на точность измерений.

Предлагаемый способ позволяет повысить точность измерений, так как позволяет измерять температуру грунта, устраняет влияние конвекции в скважине на измерения и позволяет измерять температуру по всей длине термометрической скважины.

Сущность способа заключается в измерении температуры грунта с помощью измерительной гирлянды, опускаемой в термометрическую скважину, обсадная труба термометрической скважины представляет собой трубу, изготовленную из материала с относительно низким коэффициентом теплопроводности (например, полипропилен), с частями из материала с относительно высоким коэффициентом теплопроводности (например, втулки из стали), а измерительная гирлянда представляет собой трубу, имеющую наружный диаметр, равный внутреннему диаметру обсадной трубы и аналогичную по конструкции, у которой к металлическим частям прикреплены термопары для измерения температуры.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является повышение точности измерений, устранение конвекции воздуха в термометрической скважине при производстве измерений. В зависимости от поставленной задачи данное техническое решение позволит осуществлять оперативный, автономный или непрерывный мониторинг температуры грунта под основаниями зданий и сооружений, вдоль земляного полотна железных дорог.

Сущность данного способа поясняется чертежами, где на фиг. 1 изображена схема устройства термометрической скважины для измерения температуры грунтов, на фиг. 2 - схема устройства измерительной гирлянды.

Способ осуществляется следующим образом.

В обсадную трубу термометрической скважины, представляющую собой трубу, изготовленную из материала с относительно низким коэффициентом теплопроводности (например, полипропилен) 1, с частями из материала с относительно высоким коэффициентом теплопроводности (например, втулки из стали) 2 погружается измерительная гирлянда, представляющая собой трубу, имеющую наружный диаметр, равный внутреннему диаметру обсадной трубы, изготовленную из материала с относительно низким коэффициентом теплопроводности (например, полипропилен) 3, с частями из материала с относительно высоким коэффициентом теплопроводности (например, втулки из стали) 4. К металлическим частям трубы измерительной гирлянды прикреплены термопары 5 для измерения температуры. Измерительная гирлянда погружается в обсадную трубу до совмещения ее металлических частей с металлическими частями обсадной трубы. При необходимости измерения температурного в грунте измерительная гирлянда смазывается тонким слоем теплопроводящего вещества, например солидолом, для обеспечения плотного безвоздушного контакта с обсадной трубой. Таким образом, обеспечивается высокая точность измерений.

Похожие патенты RU2597339C1

название год авторы номер документа
Устройство для мониторинга наледи с радиологгером 2021
  • Ефимов Василий Моисеевич
  • Петров Егор Николаевич
  • Пинигин Дмитрий Дмитриевич
  • Уаров Михаил Потапович
  • Большев Константин Николаевич
  • Ефремов Павел Валентинович
  • Ямкин Александр Владимирович
  • Большанин Валерий Максимович
  • Маслов Алексей Станиславович
RU2774176C1
ТЕРМОКОСА 2010
  • Никоненко Владимир Афанасьевич
  • Кропачев Денис Юрьевич
  • Неделько Александр Юрьевич
  • Амосова Екатерина Викторовна
RU2448335C2
Термометрическая коса (термокоса) 2017
  • Попов Юрий Александрович
  • Попов Сергей Юрьевич
  • Шувалов Игорь Викторович
RU2660753C1
СИСТЕМА И СПОСОБ МОНИТОРИНГА ТЕМПЕРАТУР ПРОТЯЖЕННЫХ ОБЪЕКТОВ 2010
  • Никоненко Владимир Афанасьевич
  • Кропачев Денис Юрьевич
  • Неделько Александр Юрьевич
  • Амосова Екатерина Викторовна
RU2459954C2
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛООТДАЧИ ЭКСПЛУАТАЦИОННОЙ СКВАЖИНЫ 1997
  • Попов А.П.
  • Березняков А.И.
  • Смолов Г.К.
  • Осокин А.Б.
RU2126887C1
СПОСОБ МОНИТОРИНГА ТЕМПЕРАТУРНЫХ АНОМАЛИЙ В МНОГОЛЕТНЕМЕРЗЛОМ ГРУНТЕ ТРАССЫ ЛИНЕЙНОГО ОБЪЕКТА 2017
  • Владов Юрий Рафаилович
  • Владова Алла Юрьевна
  • Нестеренко Юрий Михайлович
  • Нестеренко Максим Юрьевич
  • Владов Михаил Юрьевич
RU2669602C1
Способ оценки качества цементирования скважины в низкотемпературных породах 2017
  • Полозков Александр Владимирович
  • Полозков Ким Александрович
  • Астафьев Дмитрий Александрович
  • Бабичев Александр Анатольевич
  • Сутырин Александр Викторович
  • Истомин Владимир Александрович
  • Иванов Герман Анатольевич
  • Санников Сергей Григорьевич
  • Добренков Александр Николаевич
RU2652777C1
ТЕРМОМЕТРИЧЕСКАЯ КОСА И СПОСОБ ЕЕ КАЛИБРОВКИ 2008
  • Холин Андрей Юрьевич
RU2389984C2
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕПЛОПРОВОДНОСТИ 1994
  • Гусейнов Гасан Гусейнович
RU2096773C1
СПОСОБ ТЕМПЕРАТУРНОГО МОНИТОРИНГА В ВОДОНАПОЛНЕННЫХ СКВАЖИНАХ 2019
  • Хацкевич Богдан Дмитриевич
  • Демежко Дмитрий Юрьевич
RU2701261C1

Иллюстрации к изобретению RU 2 597 339 C1

Реферат патента 2016 года СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ГРУНТА

Изобретение относится к термометрии, а именно к полевому определению температуры грунтов, где требуется получить конкретные данные о температуре мерзлых, промерзающих и протаивающих грунтов. Техническим результатом является повышение точности измерений, устранение конвекции воздуха в термометрической скважине при производстве измерений. Способ измерения температуры грунта с помощью измерительной гирлянды, опускаемой в термометрическую скважину. При этом обсадная труба термометрической скважины представляет собой трубу, изготовленную из материала с относительно низким коэффициентом теплопроводности (например, полипропилен), с частями из материала с относительно высоким коэффициентом теплопроводности (например, втулки из стали), а измерительная гирлянда представляет собой трубу, имеющую наружный диаметр, равный внутреннему диаметру обсадной трубы, и аналогичную по конструкции, у которой к металлическим частям прикреплены термопары для измерения температуры. 2 ил.

Формула изобретения RU 2 597 339 C1

Способ измерения температуры грунта с помощью измерительной гирлянды, опускаемой в термометрическую скважину, отличающийся тем, что обсадная труба термометрической скважины представляет собой трубу, изготовленную из материала с относительно низким коэффициентом теплопроводности (например, полипропилен), с частями из материала с относительно высоким коэффициентом теплопроводности (например, втулки из стали), а измерительная гирлянда представляет собой трубу, имеющую наружный диаметр, равный внутреннему диаметру обсадной трубы, и аналогичную по конструкции, у которой к металлическим частям прикреплены термопары для измерения температуры.

Документы, цитированные в отчете о поиске Патент 2016 года RU2597339C1

ТЕРМОКОСА 2010
  • Никоненко Владимир Афанасьевич
  • Кропачев Денис Юрьевич
  • Неделько Александр Юрьевич
  • Амосова Екатерина Викторовна
RU2448335C2
Вертикально-сверлильный полуавтомат 1948
  • Яхонтов А.И.
SU75692A1
JP 2003014554 A, 15.01.2003
WO 1982000705 A1, 04.03.1982.

RU 2 597 339 C1

Авторы

Сигачев Николай Петрович

Непомнящих Евгений Владимирович

Клочков Яков Владимирович

Даты

2016-09-10Публикация

2015-04-08Подача