СПОСОБ ПОЛУЧЕНИЯ ТВЁРДОГО РАСТВОРА ДИОКСИДА ПЛУТОНИЯ В МАТРИЦЕ ДИОКСИДА УРАНА Российский патент 2016 года по МПК C01G43/25 C01G56/00 

Описание патента на изобретение RU2598943C1

Изобретение относится к радиохимической промышленности и ядерной энергетике и направлено на получение смешанного диоксида (U,Pu)O2, которое может быть использовано для изготовления ядерного смешанного уран-плутониевого МОКС-топлива реакторов ВВЭР-1000 и реакторов на быстрых нейтронах (БН-600, БН-800) атомных станций.

Для приготовления таблетированного МОКС топлива используют механическую смесь порошков UO2 и PuO2. Наиболее апробирован для этих целей MIMAS-процесс (Франция) [«Advanced MIMAS process». Auteurs: DUCROUX R.; COUTY Y.; LEROUX J.C. Editeur SFEN. Conférence: International nuclear conference on recycling, conditioning and disposal, Nice, FRA, 1998-10-25]. Он включает две основные стадии приготовления порошков:

- совместное размалывание порошкообразных оксидов урана и плутония с образованием концентрата с содержанием плутония в смеси до 25-30%;

- сухое разбавление указанного концентрата диоксидом урана до конечного требуемого содержания плутония.

Основным недостатком MIMAS-процесса и других способов, основанных на смешивании сухих порошков оксидов урана и плутония, является сложность получения максимально однородных композиций, что приводит к уменьшению количества выгорающих фракций и неполному растворению отработавшего ядерного топлива при его повторной переработке.

Этого недостатка можно избежать, если проводить совместное осаждение урана и плутония из раствора с дальнейшим переводом полученных соединений в смешанный диоксид урана и плутония (U,Pu)O2.

Известен способ, согласно которому смеси окислов получают осаждением из растворов смесей диураната аммония и гидроокиси плутония с последующей фильтрацией, сушкой, прокаливанием и восстановлением водородом [Самойлов А.Г. Тепловыделяющие элементы ядерных реакторов. - М.: Энергоатомиздат, 1985, с. 64].

К недостаткам данного способа можно отнести следующее:

- сложность процесса;

- необходимость использования высоких температур;

- использование водорода для восстановления.

В другом способе [RU 2282590 С2, МПК C0G 43/00] предложено техническое решение, позволяющее получать смешанный диоксид урана и плутония с гомогенным распределением актинидов в гранулах порошка проведением следующих операций:

- предварительное восстановление урана до U(IV) путем введения в раствор восстановителя - ионов гидрозония [N2H5]+;

- стабилизация урана в состоянии окисления IV комплексообразователями - диэтилентетрааминопентауксусной или нитрилоуксусной кислотами, образующими комплексы также и с Pu(IV);

- совместное осаждение урана и плутония с применением специальной водно-этанольной среды, добавляя к раствору до 30 (об) % этанола и созданием pH равным 7,5 концентрированным аммиаком;

- сушка и прокаливание осадка при температуре более 650°С в инертной атмосфере.

К недостаткам этого способа относятся:

- сложность процесса;

- необходимость предварительного восстановления урана, т.е. наличия отдельной стадии процесса;

- применение специальной водно-этанольной среды для соосаждения;

- необходимость инертной атмосферы и использования высоких температур.

Известен способ получения твердого раствора диоксида плутония в матрице диоксида урана [RU 2446107 С1, МПК C0G 43/025]. Этот способ включает взаимодействие нитратных растворов урана и плутония с относительным содержанием их в растворе 95÷70 и 5÷30 мас. % соответственно с гидроксиламином, что приводит к восстановлению плутония до трехвалентного состояния и соосаждению урана и плутония в виде гомогенной смеси гидроксиламината уран ила с гидроксидом плутония, и дальнейшее разложение полученного осадка на воздухе при 200-300°С.

Недостатками этого способа являются:

- выделение из раствора промежуточных разновалентных соединений урана и плутония;

- низкая термическая стабильность получаемой смеси окислов на воздухе.

Задачей, на решение которой направлено предлагаемое изобретение, является разработка экономически целесообразного относительно несложного и менее энергоемкого способа получения твердого раствора диоксида плутония в матрице диоксида урана (U,Pu)O2, пригодного для получения МОКС-топлива, за счет снижения количества стадий процесса и температуры его проведения.

Для решения поставленной задачи способ получения твердого раствора диоксида плутония в матрице диоксида урана включает взаимодействие нитратных комплексов урана и плутония с относительным содержанием их в растворе 95-70 и 5-30 мас. % соответственно с гидразингидратом при мольном отношении гидразингидрат : уран, плутоний, равном 2, с получением смешанного аморфного соединения урана и плутония, выдержку смешанного аморфного соединения урана и плутония в маточном растворе при температуре 80-90°С в течение не менее 3,5-5 часов до получения осадка мелкодисперсного порошка гомогенно смешанного гидратированного диоксида урана и плутония, отделение осадка от маточного раствора и его нагрев до температуры 280-300°С до образования целевого продукта.

В частном варианте выдержку аморфного соединения урана и плутония в маточном растворе и нагрев мелкодисперсного порошка осуществляют при конвективном подводе тепла.

Присутствие плутония в матрице диоксида урана настолько стабилизирует кристаллическую структуру, что даже после нагревания на воздухе твердого раствора диоксида плутония в матрице диоксида урана до 800°С идентифицируется только одна гомогенная смесь двух диоксидов (U,Pu)O2.

Выбор относительного содержания урана и плутония в растворе обусловлен тем, что содержание плутония в МОКС-топливе составляет от 5 до 30 мас. %.

Двухкратный мольный избыток гидразингидрата необходим для полного перевода урана и плутония в осадок мелкодисперсного порошка гомогенно смешанного гидратированного диоксида урана и плутония, дальнейшее увеличение мольного избытка гидразингидрата на технический результат не влияет, увеличение мольного избытка гидразингидрата экономически нецелесообразно.

При температурах ниже 80°С не происходит количественного перехода смешанного аморфного соединения урана и плутония в порошок гомогенно смешанного гидратированного диоксида урана и плутония, при температурах выше 90°С проведение процесса экономически нецелесообразно.

При температурах ниже 280°С не происходит количественного перехода гомогенно смешанного гидратированного диоксида урана и плутония в твердый раствор диоксида плутония в матрице диоксида урана (фиг. 5 и фиг. 6), при температурах выше 300°С проведение процесса экономически нецелесообразно.

Сущность заявляемого изобретения поясняется следующими иллюстрациями.

На фиг. 1 показан спектр исходного раствора U(VI) и Pu(VI) в 0,1 моль/л HNO3, разбавленного в 50 раз.

На фиг. 2 показан спектр раствора смешанного соединения U и Pu, выделенного из суспензии, выдержанной при Т=90°С в течение 3,5 час, и растворенного в смеси 6 моль/л HNO3 и 0,01 моль/л HF.

На фиг. 3 показан спектр раствора U, полученного растворением его соединения, выделенного из суспензии, выдержанной при Т=90°С в течение 2 сут, в смеси 6 моль/л HNO3 с 0,1 моль/л HF.

На фиг. 4 показан спектр раствора Pu, полученного растворением его соединения, выделенного из суспензии, выдержанной при Т=90°С в течение 3,5 час в смеси 6 моль/л HNO3 с 0,1 моль/л HF.

На фиг. 5 приведены данные синхронного термического анализа гидратированных диоксидов урана и плутония.

На фиг. 6 показана рентгенограмма твердого раствора диоксида плутония в матрице диоксида урана (U,Pu)O2 после его нагревания на воздухе до 800°С: UO2 (1), PuO2 (2).

Примеры осуществления способа

Пример 1

К исходному водному раствору нитратов урана и плутония в 0,1 моль/л HNO3 (фиг. 1) добавляют гидразин гидрат N2H5OH в мольном отношениие N2H5OH:(U,Pu), равном 2. В растворе образуется аморфная суспензия желто-серого цвета. После 3,5 часов ее прогревания при температуре 90°С суспензия из объемного аморфного плохо отстаивающегося состояния переходит в быстро оседающий осадок черного цвета.

Полученный осадок урана и плутония отделяют от маточного раствора. Для установления форм нахождения урана и плутония в осадке, часть осадка растворили в азотной кислоте. Как видно из данных на фиг. 2, после растворения в растворе присутствуют только ионы U(VI) и Pu(III). Их появление может быть объяснено протеканием в кислом растворе окислительно-восстановительной реакции Pu(IV)+U(IV)=Pu(III)+U(VI). Это однозначно доказывает, что в твердой фазе, образовавшейся после нагревания суспензии и перехода ее в хорошо отстаивающийся, осадок черного цвета уран и плутоний находятся в состоянии окисления 4+, так как только в этом случае при растворении в кислом растворе может протекать указанная реакция. Специально выполненные эксперименты отдельно с ураном и с плутонием показали, что в аналогичных условиях в растворах уран (фиг. 3), а также плутоний (фиг. 4) находятся в состоянии окисления 4+. Таким образом, черный осадок смешанного соединения урана и плутония представляет собой смесь их гидратированных диоксидов.

Был проведен синхронный термический анализ отделенного от маточного раствора осадка (фиг. 5). После проведения синхронного термического анализа с нагреванием образца до 800°С была снята рентгенограмма полученного продукта (фиг. 6). По данным синхронного термического анализа уменьшение веса анализируемого образца происходит в интервале температур от ~80°С до ~280°С.

Дальнейшее нагревание соединения до 800°С приводит к незначительному изменению его веса. Кривая ДТА (дифференциальный термический анализ) показывает, что кристаллизация твердого раствора диоксида урана и плутония после потери им гидратной воды происходит в два этапа с максимумами экзотермических эффектов при 175 и 225°С.

Результат рентгенофазового анализа, приведенный на фиг. 6, однозначно свидетельствует, что в образце смеси оксидов, нагретых до 800°С, идентифицируется только одна фаза диоксида актинидов - (U,Pu)O2 или гомогенная смесь двух диоксидов.

Пример 2

Способ получения твердого раствора диоксида плутония в матрице диоксида урана осуществляют, как в примере 1, процесс ведут при 80°С в течении 5 часов при конвективном подводе тепла до образования быстро оседающего осадка черного цвета. Осадок отделяют от маточного раствора и прокаливают на воздухе при температуре 300°С.

Таким образом, разработан простой и эффективный метод получения из азотнокислого раствора урана и плутония твердого раствора диоксида плутония в матрице диоксида урана, который может быть применен при производстве МОКС-топлива.

Похожие патенты RU2598943C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ТВЕРДОГО РАСТВОРА ДИОКСИДА ПЛУТОНИЯ В МАТРИЦЕ ДИОКСИДА УРАНА 2013
  • Куляко Юрий Михайлович
  • Трофимов Трофим Иванович
  • Перевалов Сергей Анатольевич
  • Самсонов Максим Дмитриевич
  • Винокуров Сергей Евгеньевич
  • Мясоедов Борис Федорович
  • Федосеев Александр Михайлович
  • Бессонов Алексей Анатольевич
  • Шадрин Андрей Юрьевич
  • Виданов Виталий Львович
  • Двоеглазов Константин Николаевич
RU2554626C2
СПОСОБ ПОЛУЧЕНИЯ ТВЕРДОГО РАСТВОРА ДИОКСИДА ПЛУТОНИЯ В МАТРИЦЕ ДИОКСИДА УРАНА 2010
  • Бейрахов Андрей Григорьевич
  • Ильин Евгений Григорьевич
  • Куляко Юрий Михайлович
  • Мясоедов Борис Фёдорович
  • Самсонов Максим Дмитриевич
  • Трофимов Трофим Иванович
RU2446107C1
СПОСОБ ПЕРЕРАБОТКИ ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА 2014
  • Куляко Юрий Михайлович
  • Трофимов Трофим Иванович
  • Перевалов Сергей Анатольевич
  • Самсонов Максим Дмитриевич
  • Винокуров Сергей Евгеньевич
  • Мясоедов Борис Федорович
  • Маликов Дмитрий Андреевич
  • Травников Сергей Сергеевич
  • Зевакин Евгений Александрович
RU2560119C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ДИОКСИДА УРАНА 2013
  • Куляко Юрий Михайлович
  • Трофимов Трофим Иванович
  • Перевалов Сергей Анатольевич
  • Самсонов Максим Дмитриевич
  • Мясоедов Борис Федорович
  • Федосеев Александр Михайлович
  • Бессонов Алексей Анатольевич
  • Шадрин Андрей Юрьевич
  • Виданов Виталий Львович
  • Винокуров Сергей Евгеньевич
RU2542317C2
СПОСОБ ПОЛУЧЕНИЯ ТВЕРДЫХ РАСТВОРОВ ОКСИДОВ АКТИНИДОВ 2012
  • Семенова Надежда Андреевна
  • Красников Леонид Владиленович
  • Лумпов Александр Александрович
  • Мурзин Андрей Анатольевич
RU2494479C1
СПОСОБ ПОЛУЧЕНИЯ СМЕШАННОГО УРАН-ПЛУТОНИЕВОГО ОКСИДА 2017
  • Меркулов Игорь Александрович
  • Тихомиров Денис Валерьевич
  • Жабин Андрей Юрьевич
  • Апальков Глеб Алексеевич
  • Смирнов Сергей Иванович
  • Дьяченко Антон Сергеевич
  • Малышева Виктория Андреевна
  • Алексеенко Владимир Николаевич
  • Волк Владимир Иванович
RU2638543C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА, ВКЛЮЧАЮЩЕГО ТВЕРДЫЙ РАСТВОР ДИОКСИДА УРАНА И ДИОКСИДА ПО МЕНЬШЕЙ МЕРЕ ОДНОГО ДРУГОГО АКТИНИДА И/ИЛИ ЛАНТАНИДА 2014
  • Питер-Солдани Гийом
  • Гранжан Стефан
  • Абрахам Франсис
RU2662526C2
СПОСОБ ПОЛУЧЕНИЯ СМЕШАННЫХ ОКСИДОВ УРАНА И ПЛУТОНИЯ 2015
  • Жабин Андрей Юрьевич
  • Апальков Глеб Алексеевич
  • Дьяченко Антон Сергеевич
  • Коробейников Артем Игоревич
  • Смирнов Сергей Иванович
RU2626854C2
СПОСОБ РАСТВОРЕНИЯ НЕКОНДИЦИОННОГО И/ИЛИ ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА 2009
  • Винокуров Сергей Евгеньевич
  • Куляко Юрий Михайлович
  • Маликов Дмитрий Андреевич
  • Мясоедов Борис Федорович
  • Перевалов Сергей Анатольевич
  • Самсонов Максим Дмитриевич
  • Трофимов Трофим Иванович
RU2400846C1
СПОСОБ ПОЛУЧЕНИЯ ИНДИВИДУАЛЬНЫХ И СМЕШАННЫХ ОКСИДОВ МЕТАЛЛОВ 2013
  • Семенова Надежда Андреевна
  • Красников Леонид Владиленович
  • Лумпов Александр Александрович
  • Мурзин Андрей Анатольевич
RU2543086C1

Иллюстрации к изобретению RU 2 598 943 C1

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ ТВЁРДОГО РАСТВОРА ДИОКСИДА ПЛУТОНИЯ В МАТРИЦЕ ДИОКСИДА УРАНА

Изобретение относится к радиохимической промышленности и ядерной энергетике и направлено на получение смешанного диоксида (U,Pu)O2, которое может быть использовано для изготовления ядерного смешанного уран-плутониевого МОКС-топлива реакторов ВВЭР-1000 и реакторов на быстрых нейтронах (БН-600, БН-800) атомных станций. Способ получения твердого раствора диоксида плутония в матрице диоксида урана включает взаимодействие нитратных комплексов урана и плутония с относительным содержанием их в растворе 95-70 и 5-30 мас.% соответственно с гидразингидратом при мольном отношении гидразингидрат : уран, плутоний, равном 2, с получением смешанного аморфного соединения урана и плутония, выдержку смешанного аморфного соединения урана и плутония в маточном растворе при температуре 80-90°C в течение не менее 3,5 часов до получения осадка мелкодисперсного порошка гомогенно смешанного гидратированного диоксида урана и плутония, отделение осадка от маточного раствора и его нагрев до температуры 280-300°C до образования целевого продукта. Изобретение обеспечивает экономически целесообразный, несложный и менее энергоемкий способ получения твердого раствора диоксида плутония в матрице диоксида урана. 1 з.п. ф-лы, 6 ил., 2 пр.

Формула изобретения RU 2 598 943 C1

1. Способ получения твердого раствора диоксида плутония в матрице диоксида урана, включающий взаимодействие нитратных комплексов урана и плутония с относительным содержанием их в растворе 95-70 и 5-30 мас.% соответственно с гидразингидратом при мольном отношении гидразингидрат : уран, плутоний, равном 2, с получением смешанного аморфного соединения урана и плутония, выдержку смешанного аморфного соединения урана и плутония в маточном растворе при температуре 80-90°C в течение 3,5-5 часов до получения осадка мелкодисперсного порошка гомогенно смешанного гидратированного диоксида урана и плутония, отделение осадка от маточного раствора и его нагрев до температуры 280-300°C до образования целевого продукта.

2. Способ по п. 1, отличающийся тем, что выдержку аморфного соединения урана и плутония в маточном растворе и нагрев мелкодисперсного порошка осуществляют при конвективном подводе тепла.

Документы, цитированные в отчете о поиске Патент 2016 года RU2598943C1

СПОСОБ ПОЛУЧЕНИЯ ТВЕРДОГО РАСТВОРА ДИОКСИДА ПЛУТОНИЯ В МАТРИЦЕ ДИОКСИДА УРАНА 2010
  • Бейрахов Андрей Григорьевич
  • Ильин Евгений Григорьевич
  • Куляко Юрий Михайлович
  • Мясоедов Борис Фёдорович
  • Самсонов Максим Дмитриевич
  • Трофимов Трофим Иванович
RU2446107C1

RU 2 598 943 C1

Авторы

Куляко Юрий Михайлович

Трофимов Трофим Иванович

Перевалов Сергей Анатольевич

Самсонов Максим Дмитриевич

Винокуров Сергей Евгеньевич

Мясоедов Борис Федорович

Федосеев Александр Михайлович

Бессонов Алексей Анатольевич

Шадрин Андрей Юрьевич

Виданов Виталий Львович

Двоеглазов Константин Николаевич

Даты

2016-10-10Публикация

2015-05-13Подача