СПОСОБ РЕГУЛИРОВАНИЯ РАСХОДА ВОЗДУХА В КОМПРЕССОР ГАЗОТУРБИННЫХ УСТАНОВОК БИНАРНОГО ЭНЕРГОБЛОКА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ Российский патент 2016 года по МПК F01K13/02 F23N1/02 

Описание патента на изобретение RU2599079C1

Изобретение относится к способам регулирования расхода воздуха в компрессор газотурбинных установок бинарных энергоблоков (ПГУ), имеющих в своем составе газотурбинную установку и паровую утилизационную часть, и может быть использовано для оптимизации режима работы энергоблока при изменении параметров наружного воздуха, как фактора влияющего на процесс сгорания топлива и теплообмен в газотурбинной установке.

В состав основного оборудования ПГУ входят обычно одна или две ГТУ, каждая со своей газовой турбиной (ГТ), которая служит приводом компрессора и электрического генератора (ЭГ), а также паровая утилизационная часть, соответственно, один или два котла-утилизатора (КУ) и одна паротурбинная установка (ПТУ) с паровой турбиной (ПТ), питаемой паром от КУ и служащей приводом еще одного ЭГ ПТ. В состав ГТУ входят осевой компрессор, камера сгорания (КС), газовая турбина и электрический генератор (ЭГ).

Известно, что эффективность использования топлива на блоках ПГУ с ГТУ весьма чувствительна к вариациям параметров наружного воздуха, в частности - температуры наружного воздуха. Естественные отклонения температуры наружного воздуха от расчетной (+15°C) ведут к существенному снижению эффективности использования топлива и к неоправданным потерям до 5-6% коэффициента полезного действия КПД (см. Ольховский Г.Г. «Энергетические газотурбинные установки», М., «Энергоатомиздат», 1985, с. 165-166).

Известен способ управления газотурбинным двигателем (см. Боднер В.А., Рязанов Ю.А., Шаймарданов Ф.А. «Системы автоматического управления двигателями летательных аппаратов», М., «Машиностроение», 1973, с. 181, рис. 4.6) путем измерения частоты вращения ротора двигателя и температуры воздуха на входе в двигатель, по измеренной частоте вращения ротора двигателя и температуре воздуха на входе в двигатель формируют значение приведенной частоты вращения ротора двигателя, по которой формируют новый заданный расход топлива, сравнивают его с измеренным текущим расходом, по величине рассогласования между заданным и измеренным значениями формируют управляющее воздействие на исполнительный механизм управления расходом топлива.

Недостаток способа обусловлен тем, что при управлении энергоблоком влияние изменений температуры и давления воздуха на входе в компрессор связывается с частотой вращения ротора двигателя и подачей топлива в камеру сгорания, т.е. его нагрузкой, а не решает проблемы оптимизации режима ГТУ и парогазового блока в целом. При этом фактическое значение КПД энергоблока имеет «плавающий» характер и может изменяться в достаточно широком диапазоне при изменении внешних параметров среды.

В качестве прототипа принят способ «Управления положением направляющих аппаратов компрессора газотурбинного двигателя» (см. патент №2432501, МПК F04D 27/00, 2011), согласно которому в процессе работы двигателя измеряют параметры потока воздуха, поступающего в компрессор, а именно температуру и давление воздуха на входе, а также частоту вращения ротора компрессора и отслеживают положение направляющих аппаратов компрессора, сравнивают его с программным значением, по результатам сравнения формируют управляющий сигнал, который подают на исполнительный механизм привода управления направляющими аппаратами компрессора, при этом дополнительно измеряют давление воздуха на выходе из компрессора, по значениям температуры воздуха на входе в двигатель и частоты вращения ротора компрессора формируют управляющий сигнал приведенной частоты вращения ротора компрессора, причем дополнительно формируют заданное значение отношения степени сжатия к приведенному расходу воздуха компрессора и заданное значение отношения степени сжатия к приведенному расходу воздуха компрессора, зависящее от температуры воздуха на входе в двигатель, которые суммируют и подают управляющий сигнал на второй вход элемента сравнения, на первый вход которого подают сигнал текущего значения отношения степени сжатия воздуха в компрессоре к приведенному расходу воздуха, формируют сигнал разности программного и текущего значений отношения степени сжатия воздуха в компрессоре к приведенному расходу воздуха и полученный управляющий сигнал подают на исполнительный механизм привода управления направляющими аппаратами компрессора.

Недостаток прототипа обусловлен невысокой точностью регулирования подачи воздуха, отклонением параметров ГТУ и блока от расчетных и дисбалансом сложной системы, который возникает при изменениях параметров наружного воздуха.

Недостаток прототипа обусловлен также тем, что при изменениях температуры и давления воздуха на входе в компрессор командное управление направлено на восстановление приведенной частоты вращения ротора двигателя, при этом исполнительный механизм привода управления направляющими аппаратами компрессора перемещают по соотношению косвенных показателей.

При заданной мощности энергоблока известный способ не позволяет получить технически безопасные (расчетные) выходные параметры ГТУ, расчетную техническую эффективность ГТУ и парогазового блока в целом, поскольку непосредственная причина возникновения дисбаланса, связанная, как показали исследования авторов, с неконтролируемыми «плавающими» изменениями массового расхода воздуха, не устраняется.

Известно устройство регулирования ГТУ, содержащее регуляторы мощности газовых турбин и регулирующие органы газотурбинной установки и паровой турбины. Устройство реализовано в системе «Автоматическое регулирование мощности парогазовой установки с воздействием на регулирующие органы газотурбинной установки и паровой турбины» (см. патент РФ №2361092, МПК F01K 13/02, 2009). При этом мощность ГТУ изменяется путем формирования задания по мощности ГТ, текущих мощностей ГТ и ПТ и воздействия на клапан расхода топлива.

Недостаток устройства регулирования ГТУ, примененный в упомянутой выше системе автоматического регулирования, заключается в том, что при управляющих воздействиях на регулирующие органы ГТУ и ПТУ не учитываются изменяющиеся факторы внешней среды, которые приводят к неконтролируемым вариациям режимных параметров энергоблока (температуры уходящих газов за КС и ГТУ, активной мощности ГТ и др.), неэффективной работе ГТУ, утилизационной части ПГУ и энергоблока в целом.

Технический результат изобретения - повышение точности регулирования расхода воздуха и оптимизация режима работы ГТУ и энергоблока путем устранения возникающего дисбаланса между заданным расходом топлива и неконтролируемым «плавающим» массовым расходом воздуха при естественных колебаниях температуры и давления наружного воздуха.

Технический результат достигается тем, что в способе регулирования расхода воздуха в компрессор газотурбинных установок бинарного энергоблока изменяют угол открытия входного направляющего аппарата компрессора, измеряют поступающий в компрессор массовый расход воздуха, который стабилизируют на заданном уровне, при этом скорость изменения угла открытия входного направляющего аппарата компрессора ограничивают максимально допустимой скоростью нагружения газовой турбины. Массовый расход воздуха измеряют путем измерения объемного расхода, температуры и давления наружного воздуха, поступающего в компрессор, фильтрации случайных помех по каждому из измеряемых параметров и их последующего комплексирования.

Технический результат достигается тем, что устройство регулирования расхода воздуха в компрессор газотурбинных установок бинарного энергоблока содержит регулятор положения входного направляющего аппарата компрессора, выходом подключенный к исполнительному механизму управления углом открытия входного направляющего аппарата компрессора, датчик положения исполнительного механизма входного направляющего аппарата компрессора, подключенный к 1-му входу регулятора положения входного направляющего аппарата компрессора, блок задания угла открытия входного направляющего аппарата компрессора, выходом подключенный ко 2-му входу регулятора положения входного направляющего аппарата компрессора, датчик температуры и датчик давления наружного воздуха, отличающееся тем, что устройство дополнительно снабжено датчиком объемного расхода наружного воздуха, блоком фильтрации сигнала по объемному расходу наружного воздуха, блоком фильтрации сигнала по температуре наружного воздуха, блоком фильтрации сигнала по давлению наружного воздуха, блоком формирования комплексированного сигнала по массовому расходу воздуха с ограничителем скорости изменения комплексированного сигнала, корректирующим регулятором с задатчиком и блоком формирования задания от системы более высокого уровня, при этом датчики объемного расхода, температуры и давления наружного воздуха подключены посредством блоков фильтрации сигналов по объемному расходу, температуре и давлению наружного воздуха к соответственно к 1-му, 2-му, 3-му входам блока формирования комплексированного сигнала по массовому расходу воздуха, блок формирования комплексированного сигнала выходом подключен к 1-му входу корректирующего регулятора посредством ограничителя скорости изменения комплексированного сигнала, ко 2-му и 3-му входам корректирующего регулятора соответственно подключены задатчик корректирующего регулятора и блок формирования задания от системы управления более высокого уровня, а выход корректирующего регулятора подключен к 3-му входу регулятора положения входного направляющего аппарата компрессора. При этом датчики температуры, давления и объемного расхода наружного воздуха предпочтительно устанавливать на отметке забора наружного воздуха, подаваемого на всас компрессора газотурбинных установок бинарного энергоблока.

Проведенные поисковые исследования (авторов предлагаемого изобретения) показали, что определяющим в нарушении расчетного режима фактором является неконтролируемое при естественных колебаниях температуры и давления наружного воздуха «плавающее» изменение массового расхода воздуха, подаваемого в компрессор ГТУ.

Например, при изменении температуры наружного воздуха (от -5 до +25°C) при заданном постоянном расходе топлива 6,63 кг/с и воздуха 352 кг/с (что соответствует нагрузке ГТУ 110 МВт), технологические параметры блока (температура уходящих газов за ГТУ, температура перегретого пара контура высокого давления и др.) отклоняются от расчетных и выходят за допустимые пределы. Соответственно: температура уходящих газов за ГТУ отклоняется на 45°C, а температура перегретого пара контура высокого давления - на 40°C.

При этом известный регулятор положения входного направляющего аппарата компрессора, выполненный по схеме с жесткой обратной связью, «не замечает» колебаний температуры и давления наружного воздуха и соответственно изменение массового расхода воздуха, подаваемого в компрессор ГТУ, и не устраняет возникающий дисбаланс между заданным расходом топлива и необходимым массовым расходом воздуха.

Стабилизация массового расхода воздуха возвращает параметры в расчетные диапазоны эффективного управления. В частности, температура уходящих газов за ГТ при этом практически остается в рабочем (расчетном) диапазоне от 455 до 530°C, температура перегретого пара контура ВД также остается на расчетном уровне 510°C, КПД КУ при этом на уровне расчетного - 85%, КПД ПТ - 32,5%, а КПД ПГУ на расчетном уровне (51-52%).

Способ регулирования расхода воздуха в компрессор газотурбинных установок бинарного энергоблока согласно изобретению показан на фиг. 1; способ комплексирования параметров объемного расхода, температуры и давления наружного воздуха согласно изобретению показан на фиг. 2; схема устройства регулирования расхода воздуха в компрессор газотурбинных установок бинарного энергоблока согласно изобретению приведена на фиг. 3; результаты исследований эффективности управления согласно изобретению показаны на фиг. 4.

На фиг. 1-3 обозначено: 1 - регулирование расхода воздуха; 2 - изменение угла открытия входного направляющего аппарата компрессора; 3 - измерение массового расхода воздуха; 4 - заданный уровень стабилизации; 5 - ограничение скорости изменения угла открытия входного направляющего аппарата компрессора; 6 - измерение объемного расхода воздуха; 7 - измерение температуры наружного воздуха; 8 - измерение давления наружного воздуха; 9 - фильтрация случайной помехи по объемному расходу воздуха; 10 - фильтрация случайной помехи по температуре наружного воздуха; 11 - фильтрация случайной помехи по давлению наружного воздуха; 12 - комплексирование; 13 - регулятор положения входного направляющего аппарата компрессора; 14 - исполнительный механизм управления углом открытия входного направляющего аппарата компрессора; 15 - датчик положения исполнительного механизма входного направляющего аппарата компрессора; 16 - блок задания угла открытия входного направляющего аппарата компрессора; 17 - датчик температуры наружного воздуха; 18 - датчик давления наружного воздуха; 19 - датчик объемного расхода наружного воздуха; 20 - блок фильтрации сигнала по объемному расходу наружного воздуха; 21 - блок фильтрации сигнала по температуре наружного воздуха; 22 - блок фильтрации сигнала по давлению наружного воздуха; 23 - блок формирования комплексированного сигнала по массовому расходу воздуха; 24 - ограничитель скорости изменения комплексированного сигнала; 25 - корректирующий регулятор; 26 - задатчик корректирующего регулятора; 27 - блок формирования задания от системы более высокого уровня; Tн.в - температура наружного воздуха, °C; Pн.в - давление наружного воздуха, Па; r0 - плотность забираемого воздуха, кг/м3; αвна - положение ВНА компрессора, град.; Fв - площадь проточной части на входе в компрессор, м2; Gm - массовый расход воздуха, кг/с; Gv - объемный расход воздуха, м3/с; T г " - температура уходящих газов за ГТ, °C; Тппвд - температура перегретого пара контура высокого давления, °C.

Способ регулирования расхода воздуха в компрессор ГТУ бинарного энергоблока осуществляется следующим образом (фиг. 1, фиг. 2).

При изменении параметров (температуры и давления) наружного воздуха, поступающего в компрессор, происходит неконтролируемое изменение его плотности и, соответственно, отклонение массового расхода воздуха от расчетного (необходимого), что ведет к изменению режимных параметров ГТУ и блока, вследствие дисбаланса технологических процессов сжатия воздуха в компрессоре, горения топливовоздушной смеси в камере сгорания, расширения продуктов сгорания в газовой турбине, охлаждения лопаток газотурбинного двигателя, конвективного теплообмена и тепловосприятия поверхностей нагрева котла-утилизатора, расширения пара в паровой турбине.

Для устранения возникающего дисбаланса измеряют массовый расход воздуха 3, и его стабилизируют на заданном уровне 4, путем коррекции (изменении) угла открытия направляющего аппарата компрессора 2, при этом скорость изменения угла открытия входного направляющего аппарата компрессора ограничивают максимально допустимой скоростью нагружения газовой турбины 5 (фиг. 1). Иными словами, корректируя угол открытия направляющего аппарата компрессора 2 по измеряемому текущему массовому расходу воздуха 3 устраняем отклонения массового расхода воздуха, вызванных изменениями параметров внешней среды, и таким образом повышаем точность регулирования расхода воздуха и оптимизируем режим работы ГТУ.

Массовый расход воздуха является сложной функцией физических параметров Gm=f(Gv, Тн.в., Pн.в.). Измерение массового расхода воздуха 3 осуществляется путем измерения объемного расхода 6, температуры 7 и давления 8 наружного воздуха, поступающего в компрессор, фильтрации 9, 10, 11 случайных помех по каждому из измеряемых параметров и их последующего комплексирования 12 (фиг. 2) по формуле:

где Gm - оценка массового расхода воздуха (Gm=r0·Gv), кг/с; r0 - плотность воздуха при заданных условиях (определяется из уравнения Менделеева-Клапейрона: r 0 = m V = M P н . в . R T в * ), кг/м3; Gv - объемный расход воздуха, м3/с; T в * - полная температура воздуха ( T в * = T н . в . + 273 ) , °К; Tн.в - температура наружного воздуха, °C; Pн.в - давление наружного воздуха, Па; m - масса воздуха, кг; V - объем воздуха, м3; M - молярная масса воздуха (M=0,029), кг/моль; R - универсальная газовая постоянная (R=8,31), Дж/(моль·К).

Устройство регулирования расхода воздуха в компрессор газотурбинных установок бинарного энергоблока (фиг. 3) содержит регулятор 13 положения входного направляющего аппарата компрессора, выходом подключенный к исполнительному механизму 14 управления углом открытия входного направляющего аппарата компрессора, датчик 15 положения исполнительного механизма входного направляющего аппарата компрессора, подключенный к 1-му входу регулятора 13 положения входного направляющего аппарата компрессора, блок 16 задания угла открытия входного направляющего аппарата компрессора, выходом подключенный ко 2-му входу регулятора 13 положения входного направляющего аппарата компрессора, датчик температуры 17 и датчик давления 18 наружного воздуха. Устройство дополнительно снабжено датчиком 19 объемного расхода наружного воздуха, блоком 20 фильтрации сигнала по объемному расходу наружного воздуха, блоком 21 фильтрации сигнала по температуре наружного воздуха, блоком 22 фильтрации сигнала по давлению наружного воздуха, блоком 23 формирования комплексированного сигнала по массовому расходу воздуха с ограничителем 24 скорости изменения комплексированного сигнала, корректирующим регулятором 25 с задатчиком 26 и блоком 27 формирования задания от системы более высокого уровня, при этом датчики объемного расхода 19, температуры 17 и давления 18 наружного воздуха подключены посредством блоков 20, 21, 22 фильтрации сигналов по объемному расходу 20, температуре 21 и давлению 22 наружного воздуха к соответственно к 1-му, 2-му, 3-му входам блока 23 формирования комплексированного сигнала по массовому расходу воздуха, блок 23 формирования комплексированного сигнала выходом подключен к 1-му входу корректирующего регулятора 25 посредством ограничителя 24 скорости изменения комплексированного сигнала, ко 2-му и 3-му входам корректирующего регулятора 25 соответственно подключены задатчик 26 корректирующего регулятора 25 и блок 27 формирования задания от системы управления более высокого уровня, а выход корректирующего регулятора 25 подключен к 3-му входу регулятора 13 положения входного направляющего аппарата компрессора. Места установки датчиков температуры 17, давления 18 и объемного расхода 19 наружного воздуха устанавливают на отметке забора наружного воздуха, подаваемого на всас компрессора газотурбинных установок бинарного энергоблока.

Устройство регулирования расхода воздуха в компрессор газотурбинных установок бинарного энергоблока работает следующим образом (фиг. 3).

Регулятор 13 поддерживает заданное задатчиком 16 положение исполнительного механизма 14 входного направляющего аппарата компрессора ГТУ по сигналу жесткой обратной связи от датчика 15 положения исполнительного механизма.

Корректирующий регулятор 25 с задатчиком 26 и блоком 27 задания нагрузки компрессора от подсистемы более высокого уровня при изменении параметров внешней среды воспринимает отклонение комплексированного сигнала от заданного, формирует сигнал небаланса и соответствующее корректирующее воздействие на регулятор 13, который изменяет положение направляющего аппарата ВНА, восстанавливая изменившийся при изменении температуры и/или давления расход воздуха.

Комплексированный сигнал, формируемый блоком 23 согласно (1), характеризует массовый расход поступающего в компрессор воздуха, который в отличие от других показателей чувствителен к изменениям температуры и давления наружного воздуха, что позволяет учитывать эти изменения в регулировании ГТУ.

Эффективность работы способа регулирования расхода воздуха в компрессор газотурбинных установок бинарного энергоблока показана на фиг. 4, где приведены результаты исследования эффективности управления энергоблоком ПГУ в зависимости от температуры внешней среды. На фиг. 4 обозначено: 28 - влияние температуры наружного воздуха на изменение основных параметров блока; 29 - то же со стабилизатором массового расхода воздуха; выделены (в прямоугольниках) параметры, значения которых находятся за пределами допустимых требований; вертикальные жирные пунктирные линии - момент нанесения внешнего возмущения; горизонтальные пунктирные линии - верхние границы технологически безопасных значений параметров.

Не трудно видеть (см. фиг. 4, графики под номером 28), что при изменении температуры наружного воздуха (фиг. 4-а), например, в сторону ее увеличения, угол открытия ВНА (фиг. 4-б) не изменяется (расход топлива задан постоянным). Однако плотность забираемого воздуха при этом снижается (фиг. 4-г). Изменение плотности воздуха вызывает изменение его объемного (фиг. 4-в) и массового (фиг. 4-д) расходов на входе в компрессор, при этом объемный расход растет, а массовый снижается. Изменение массового расхода приводит к изменению температур и за компрессором, и за ГТ (фиг. 4-е) в сторону роста. Не трудно видеть, что при этом имеет место превышение технически безопасных значений параметров. Температура перегретого пара контура высокого давления (фиг. 4-ж) растет вслед за температурой уходящих газов за ГТ. На практике это ведет к тому, что требуется разгрузка блока, изменение его режима, чтобы ввести технологические параметры в расчетные диапазоны, что приводит к снижению эффективности работы ПГУ.

Использование способа регулирования расхода воздуха в компрессор газотурбинных установок бинарного энергоблока путем стабилизации необходимого массового расхода воздуха поступающего в компрессор возвращает технологические параметры в диапазоны эффективного управления энергоблоком в целом (см. фиг. 4, графики под номером 29).

Сравнение результатов влияния температуры наружного воздуха без стабилизатора (см. на фиг. 4, графики под номером 28) и со стабилизатором (корректором положения направляющего аппарата ВНА) массового расхода воздуха в компрессоре ГТУ (см. на фиг. 4, графики под номером 29) говорит о достаточно высокой эффективности найденного технического решения. При высокой температуре наружного воздуха (фиг. 4-а) и, как следствие, высокой температуре воздуха на входе и на выходе компрессора, ВНА открывается (фиг. 4-б, график под номером 29). Массовый расход воздуха (фиг. 4-д, график под номером 29) стабилизирован, а объемный расход воздуха (фиг. 4-в, график под номером 29) соответственно увеличился. Нетрудно видеть, что температура уходящих газов за ГТ (фиг. 4-е, график под номером 29) при этом практически остается в рабочем (расчетном) диапазоне от 455 до 530°C (определен надежностью работы блока в целом согласно инструкциям). Отклонения других технологических параметров ГТУ, КУ, ПТ и блока ПГУ в целом, вызванные влиянием температуры наружного воздуха, также остаются в пределы расчетных диапазонов. В частности, температура перегретого пара контура высокого давления остается на расчетном уровне 510°C (фиг. 4-ж, график под номером 29).

В результате имеет место повышение точности регулирования расхода воздуха и оптимизация режима работы ГТУ и энергоблока путем устранения возникающего дисбаланса между заданным расходом топлива и необходимым массовым расходом воздуха при естественных колебаниях температуры и давления наружного воздуха.

Похожие патенты RU2599079C1

название год авторы номер документа
СПОСОБ РЕГУЛИРОВАНИЯ МОЩНОСТИ ПАРОГАЗОВЫХ УСТАНОВОК И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2015
  • Тверской Юрий Семенович
  • Муравьев Игорь Константинович
RU2601320C1
Система автоматического регулирования режима работы пылеприготовительной установки 1984
  • Тверской Юрий Семенович
SU1284595A1
СПОСОБ ЭКСПЛУАТАЦИИ ПАРОГАЗОВОЙ УСТАНОВКИ В МАНЕВРЕННОМ РЕЖИМЕ 2014
  • Агеев Андрей Владимирович
  • Балашов Юрий Аркадьевич
  • Березинец Павел Андреевич
  • Гомболевский Владимир Иванович
  • Конторович Татьяна Савельевна
  • Радин Юрий Анатольевич
  • Чертков Анатолий Иванович
RU2585156C1
СПОСОБ ЗАЩИТЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ОТ ПОМПАЖА КОМПРЕССОРА 2023
  • Саженков Алексей Николаевич
  • Савенков Юрий Семенович
  • Якушев Алексей Павлович
RU2801768C1
СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ РАБОТЫ ГАЗОТУРБИННОЙ УСТАНОВКИ 2002
  • Кириленко В.Н.
  • Брулев С.О.
  • Иванов В.В.
RU2229030C2
Способ уменьшения мощности газотурбинной установки ниже её допустимого нижнего предела регулировочного диапазона 2021
  • Балашов Юрий Аркадьевич
  • Березинец Павел Андреевич
  • Маркина Вероника Николаевна
RU2767677C1
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ ГЛУЗДАКОВА Ю.С. 1993
  • Глуздаков Юрий Семенович
RU2078968C1
Способ автоматической защиты газотурбинного двигателя от помпажа 2022
  • Саженков Алексей Николаевич
  • Савенков Юрий Семенович
RU2789806C1
Осевой многоступенчатый компрессор с впрыском воды в его проточную часть 2020
  • Балашов Юрий Аркадьевич
  • Березинец Павел Андреевич
  • Теплов Борис Дмитриевич
  • Самойлов Владимир Леонидович
  • Маркина Вероника Николаевна
  • Агеев Андрей Владимирович
  • Туз Наталья Евгеньевна
  • Лобач Игорь Анатольевич
RU2757150C1
Способ управления входным направляющим аппаратом компрессора газотурбинного двигателя 2022
  • Саженков Алексей Николаевич
  • Савенков Юрий Семенович
RU2795359C1

Иллюстрации к изобретению RU 2 599 079 C1

Реферат патента 2016 года СПОСОБ РЕГУЛИРОВАНИЯ РАСХОДА ВОЗДУХА В КОМПРЕССОР ГАЗОТУРБИННЫХ УСТАНОВОК БИНАРНОГО ЭНЕРГОБЛОКА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Изобретение относится к энергетике. Способ регулирования расхода воздуха в компрессор газотурбинных установок бинарного энергоблока, который осуществляется путем изменения угла открытия входного направляющего аппарата компрессора, измерения поступающего в компрессор массового расхода воздуха, который стабилизируют на заданном уровне, при этом скорость изменения угла открытия входного направляющего аппарата компрессора ограничивают максимально допустимой скоростью нагружения газовой турбины. Также представлено устройство регулирования расхода воздуха в компрессор газотурбинных установок бинарного энергоблока. Изобретение позволяет повысить точность регулирования расхода воздуха, а также оптимизировать режим работы газотурбинной установки и энергоблока путем устранения возникающего дисбаланса между заданным расходом топлива и неконтролируемым «плавающим» массовым расходом воздуха при естественных колебаниях температуры и давления наружного воздуха. 2 н. и 2 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 599 079 C1

1. Способ регулирования расхода воздуха в компрессор газотурбинных установок бинарного энергоблока путем изменения угла открытия входного направляющего аппарата компрессора, отличающийся тем, что измеряют поступающий в компрессор массовый расход воздуха, который стабилизируют на заданном уровне, при этом скорость изменения угла открытия входного направляющего аппарата компрессора ограничивают максимально допустимой скоростью нагружения газовой турбины.

2. Способ по п. 1, отличающийся тем, что массовый расход воздуха измеряют путем измерения объемного расхода, температуры и давления наружного воздуха, поступающего в компрессор, фильтрации случайных помех по каждому из измеряемых параметров и их соответствующего комплексирования.

3. Устройство регулирования расхода воздуха в компрессор газотурбинных установок бинарного энергоблока, содержащее регулятор положения входного направляющего аппарата компрессора, выходом подключенный к исполнительному механизму управления углом открытия входного направляющего аппарата компрессора, датчик положения исполнительного механизма входного направляющего аппарата компрессора, подключенный к 1-му входу регулятора положения входного направляющего аппарата компрессора, блок задания угла открытия входного направляющего аппарата компрессора, выходом подключенный ко 2-му входу регулятора положения входного направляющего аппарата компрессора, датчик температуры и датчик давления наружного воздуха, отличающееся тем, что устройство дополнительно снабжено датчиком объемного расхода наружного воздуха, блоком фильтрации сигнала по объемному расходу наружного воздуха, блоком фильтрации сигнала по температуре наружного воздуха, блоком фильтрации сигнала по давлению наружного воздуха, блоком формирования комплексированного сигнала по массовому расходу воздуха с ограничителем скорости изменения комплексированного сигнала, корректирующим регулятором с задатчиком и блоком формирования задания от системы более высокого уровня, при этом датчики объемного расхода, температуры и давления наружного воздуха подключены посредством блоков фильтрации сигналов по объемному расходу, температуре и давлению наружного воздуха к соответственно к 1-му, 2-му, 3-му входам блока формирования комплексированного сигнала по массовому расходу воздуха, блок формирования комплексированного сигнала выходом подключен к 1-му входу корректирующего регулятора посредством ограничителя скорости изменения комплексированного сигнала, ко 2-му и 3-му входам корректирующего регулятора соответственно подключены задатчик корректирующего регулятора и блок формирования задания от системы управления более высокого уровня, а выход корректирующего регулятора подключен к 3-му входу регулятора положения входного направляющего аппарата компрессора.

4. Устройство регулирования расхода воздуха в компрессор газотурбинных установок бинарного энергоблока по п. 3, отличающееся тем, что датчики температуры, давления и объемного расхода наружного воздуха устанавливают на отметке забора наружного воздуха, подаваемого на всас компрессора газотурбинных установок бинарного энергоблока.

Документы, цитированные в отчете о поиске Патент 2016 года RU2599079C1

US 2013239573 A1, 19.09.2013;RU 2361092 C1, 10.07.2009;RU 2432501 C1, 27.10.2011;SU 313989 A1, 07.09.1971.

RU 2 599 079 C1

Авторы

Тверской Юрий Семенович

Муравьев Игорь Константинович

Даты

2016-10-10Публикация

2015-05-06Подача