Изобретение относится к стеклам (стеклянным изделиям) с оптически прозрачным покрытием, которые применяются для окон и других целей, в первую очередь, в строительстве (архитектуре), дизайне помещений и на транспорте, когда от стекол требуются специальные свойства по поглощению (превращению) энергии и пропусканию света. Изделия из стекла могут иметь любую форму, но чаще имеют плоскую поверхность.
Известны стеклянные изделия в виде микросфер (патент на изобретение РФ №2059574, МПК С03В 19/10, 1992 г. и международная заявка PCT/RU96/00118, публикация WO 97/42127, МПК С03В 19/10, 1997 г.). Однако стеклянные микросферы имеют низкий коэффициент светопропускания (безразмерная физическая величина, равная отношению потока излучения, прошедшего через среду, к потоку излучения, упавшего на ее поверхность).
Наиболее близким к предлагаемому техническому решению является оконное стекло для транспортного средства (патент на изобретение РФ №2418753, МПК С03С 17/25, 2006 г.) с оптически прозрачным покрытием, экранирующим инфракрасное излучение. Недостатком данного стекла является низкий коэффициент светопропускания, т.к. в этом случае не используется ультрафиолетовая составляющая падающего на стекло света для ее преобразования в видимый свет.
Техническим результатом изобретения является повышение коэффициента светопропускания в видимой части спектра за счет преобразования в видимый свет ультрафиолетовой составляющей падающего на стекло света.
Указанный технический результат достигается тем, что в органическом и неорганическом стекле (стеклянном изделии) с оптически прозрачным покрытием в качестве покрытия (аппрета) используют оптический отбеливатель. При этом покрытие (аппретирование) может быть нанесено на а) внешнюю, б) внутреннюю или в) на обе стороны поверхности стекла, а суммарная толщина слоя оптического отбеливателя составляет не более 500 нм.
Глаз человека чувствителен только к определенной области электромагнитного излучения, называемой видимым спектром, которая охватывает диапазон длин волн от 400 до 700 нм. Излучения, которые находятся за пределами видимого диапазона, включают в себя инфракрасную (волны длиной более 700 нм) и ультрафиолетовую область (менее 400 нм). Оптические отбеливатели обладают способностью поглощать ультрафиолетовую составляющую падающего на них света в области 300-400 нм и преобразовывать полученную энергию в видимую часть спектра (400-500 нм). Благодаря флуоресценции оптические отбеливатели преобразуют содержащийся в естественном свете и в свете многих искусственных источников ультрафиолет в излучение видимого диапазона, делая его более интенсивным.
На фиг.1 изображено стекло 1 с односторонним покрытием (аппретированием) 2 из оптического отбеливателя с толщиной слоя 3, не превышающей 500 нм.
На фиг.2 изображено стекло 1 с двусторонним покрытием (аппретированием) 2 из оптического отбеливателя с суммарной толщиной слоев 3 и 4, не превышающей 500 нм.
Свет (например, фар автомобиля), направленный на стекло 1, проходя через слой оптического отбеливателя, содержащегося в покрытии 2, преобразовывает ультрафиолетовую составляющую света в видимую часть спектра (400-500 нм). Таким образом, пройдя стекло 1 с покрытием 2, световой поток усиливается в видимой части спектра, повышая коэффициент светопропускания стекла 1.
Вариант нанесения покрытия 2 на стекло 1 зависит от взаимного расположения источника света и потребителя.
Если:
- источник света (например, лампа светильника) находится с внутренней стороны плафона (стекла 1), то покрытие 2 наносится на внутреннюю поверхность плафона;
- потребитель находится с внутренней стороны стекла (например, лобового стекла автомобиля), то покрытие 2 наносится на внешнюю поверхность стекла;
- потребитель и источник света находятся по одну сторону стекла 1, а освещаемая поверхность по другую сторону стекла 1 (как это происходит, например, в аквариуме с внешней подсветкой), то покрытие 2 наносится на обе стороны поверхности стекла 1.
В любом из указанных вариантов суммарная толщина слоя оптического отбеливателя не должна превышать 500 нм.
В качестве оптического отбеливателя используются, как правило, производные стильбена, например препараты «Белофор США», «Люксафор 093» или «Optiblanc WS». Максимально высокие показатели коэффициента световозвращения достигаются в случае, когда положение главного максимума фотолюминесценции оптического отбеливателя составляет 510-550 нм.
Для улучшения адгезии оптического отбеливателя к стеклу 1 используется промотор адгезии, например диаминофункциональный промотор адгезии аминоэтиламинопропил-триметоксисилан, полифункциональные аминосиланы «Пента-65» и «Пента-69», силан «Silquest А-1110».
Для повышение светостойкости стекла 1 и покрытия 2 в состав последнего добавляют светостабилизатор (фотостабилизатор), например «Фенозан 23», «Ирганокс 1010», «Беназол П», «Тинувин 327».
Поскольку на большинство материалов коротковолновое УФ-излучение оказывает большее негативное воздействие, чем длинноволновое излучение, то повысить их надежность, а следовательно, и срок службы можно, если обеспечить каскадный механизм переноса (миграции) энергии в материале. Для реализации указанных механизмов переноса энергии используются фотосенсибилизаторы, которые, поглощая коротковолновое УФ-излучение, передают его оптическому отбеливателю. Совместное применение фотосенсибилизаторов и оптических отбеливателей позволяет расширить диапазон поглощенной энергии, повышая коэффициент световозвращения, а также светостойкость стекла 1 и покрытия 2. В качестве фотосенсибилизатора может быть использована салициловая кислота, β-нафтиламин, Р-соль или Г-соль.
Для улучшения водоотталкивающих свойств покрытия 2, а следовательно, повышения его срока службы и морозостойкости, в состав аппрета добавляют гидрофобизаторы, состоящие в основном из кремнеорганических соединений, например «БИОНИК МВО», «КРИСТАЛЛИЗОЛ», «Chelsea Stone».
В результате проведенных экспериментов, в ходе которых определялся коэффициент светопропускания стекла 1 с покрытием 2, было установлено, что суммарная толщина слоя оптического отбеливателя не должна превышать 500 нм, поскольку по мере увеличения толщины слоя оптического отбеливателя коэффициент светопропускания стекла 1 сначала увеличивается, затем доходит до предельных величин и начинает уменьшаться. Оптимальная суммарная толщина слоя оптического отбеливателя (в зависимости от материала стекла 1, вида (марки) самого оптического отбеливателя, а также промотора адгезии, светостабилизатора, фотосенсибилизатора и гидрофобизатора) составляет 20-300 нм. В этом случае коэффициент светопропускания стекла 1 возрастает на 12-15%.
название | год | авторы | номер документа |
---|---|---|---|
СТЕКЛЯННЫЙ МИКРОШАРИК | 2013 |
|
RU2602328C2 |
СПОСОБ ПОЛУЧЕНИЯ ОПТИЧЕСКИ ПРОЗРАЧНОГО ЭЛЕКТРОПРОВОДНОГО ПОКРЫТИЯ И ИЗДЕЛИЕ С ПОКРЫТИЕМ, ПОЛУЧЕННОЕ УКАЗАННЫМ СПОСОБОМ (ВАРИАНТЫ) | 2005 |
|
RU2274675C1 |
ЭЛЕКТРОХРОМНОЕ УСТРОЙСТВО И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2019 |
|
RU2711654C1 |
СВЕТОИЗЛУЧАЮЩИЙ СВЕТОВОЗВРАЩАЮЩИЙ ЛИСТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 1998 |
|
RU2204154C2 |
Стеклянный микрошарик для световозвращающих покрытий | 2018 |
|
RU2692714C1 |
ПОДЛОЖКА С ТЕПЛОРЕГУЛИРУЮЩИМ ПОКРЫТИЕМ ДЛЯ ИЗОЛЯЦИОННОГО СТЕКЛЯННОГО БЛОКА | 2003 |
|
RU2342335C2 |
СОСТАВНАЯ ПАНЕЛЬ ОСТЕКЛЕНИЯ С СОЛНЦЕЗАЩИТНЫМ ПОКРЫТИЕМ И ПОКРЫТИЕМ, ОТРАЖАЮЩИМ ТЕПЛОВЫЕ ЛУЧИ | 2018 |
|
RU2754113C1 |
ПОДЛОЖКА ДЛЯ БИОЧИПА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ | 2009 |
|
RU2411180C1 |
ПОКРЫТИЕ ДЛЯ ФОТОВОЛЬТАИЧЕСКОЙ ЯЧЕЙКИ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2014 |
|
RU2577174C1 |
СВЕТОДИОДНЫЙ ИСТОЧНИК СВЕТА (ВАРИАНТЫ) | 2013 |
|
RU2569312C2 |
Изобретение относится к стеклам с оптически прозрачным покрытием, которые применяются в строительстве, дизайне помещений и на транспорте. Технический результат - повышение коэффициента светопропускания в видимой части спектра за счет преобразования в видимый свет ультрафиолетовой составляющей падающего на стекло света. На стекло наносят оптически прозрачное покрытие. В качестве покрытия используют оптический отбеливатель, при этом суммарная толщина слоя оптического отбеливателя составляет не более 500 нм. 3 з.п. ф-лы, 2 ил.
1. Стекло с оптически прозрачным покрытием, отличающееся тем, что в качестве покрытия используют оптический отбеливатель, при этом суммарная толщина слоя оптического отбеливателя составляет не более 500 нм.
2. Стекло по п.1, отличающееся тем, что покрытие наносят на внешнюю поверхность стекла.
3. Стекло по п.1, отличающееся тем, что покрытие наносят на внутреннюю поверхность стекла.
4. Стекло по п.1, отличающееся тем, что покрытие наносят на обе стороны стекла.
Лесная визирная вешка | 1929 |
|
SU17756A1 |
СПОСОБ ПОЛУЧЕНИЯ ТОНКИХ ПРОСВЕТЛЯЮЩИХ ПОКРЫТИЙ НА ОСНОВЕ МЕЗОПОРИСТОГО ДИОКСИДА КРЕМНИЯ ЗОЛЬ-ГЕЛЬ МЕТОДОМ В ПРИСУТСТВИИ ОРГАНИЧЕСКИХ КИСЛОТ, ФУНКЦИОНАЛЬНЫХ ПРОИЗВОДНЫХ ОРГАНИЧЕСКИХ КИСЛОТ, СЛОЖНЫХ ЭФИРОВ ОРГАНИЧЕСКИХ КИСЛОТ | 2007 |
|
RU2368575C2 |
ОКОННОЕ СТЕКЛО ДЛЯ ТРАНСПОРТНОГО СРЕДСТВА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2006 |
|
RU2418753C2 |
Самоподъемная плавучая буровая установка | 1986 |
|
SU1451256A1 |
EP 1069447 A2, 17.01.2001. |
Авторы
Даты
2016-11-20—Публикация
2013-08-15—Подача